Projective Determinacy
   HOME
*





Projective Determinacy
In mathematical logic, projective determinacy is the special case of the axiom of determinacy applying only to projective sets. The axiom of projective determinacy, abbreviated PD, states that for any two-player infinite game of perfect information of length ω in which the players play natural numbers, if the victory set (for either player, since the projective sets are closed under complementation) is projective, then one player or the other has a winning strategy. The axiom is not a theorem of ZFC (assuming ZFC is consistent), but unlike the full axiom of determinacy (AD), which contradicts the axiom of choice, it is not known to be inconsistent with ZFC. PD follows from certain large cardinal axioms, such as the existence of infinitely many Woodin cardinals. PD implies that all projective sets are Lebesgue measurable (in fact, universally measurable) and have the perfect set property and the property of Baire A subset A of a topological space X has the property of Baire ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universally Measurable
In mathematics, a subset A of a Polish space X is universally measurable if it is measurable with respect to every complete probability measure on X that measures all Borel subsets of X. In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see below). Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable. Finiteness condition The condition that the measure be a probability measure; that is, that the measure of X itself be 1, is less restrictive than it may appear. For example, Lebesgue measure on the reals is not a probability measure, yet every universally measurable set is Lebesgue measurable. To see this, divide the real line into countably many intervals of length 1; say, ''N''0=[0,1), ''N''1=[1,2), ''N''2=[-1,0), ''N''3=[2,3), ''N''4=[-2,-1), and so on. Now letting μ be Lebesgue measure, define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of " well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axioms Of Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational system fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Game Theory
Game theory is the study of mathematical models of strategic interactions among rational agents. Myerson, Roger B. (1991). ''Game Theory: Analysis of Conflict,'' Harvard University Press, p.&nbs1 Chapter-preview links, ppvii–xi It has applications in all fields of social science, as well as in logic, systems science and computer science. Originally, it addressed two-person zero-sum games, in which each participant's gains or losses are exactly balanced by those of other participants. In the 21st century, game theory applies to a wide range of behavioral relations; it is now an umbrella term for the science of logical decision making in humans, animals, as well as computers. Modern game theory began with the idea of mixed-strategy equilibria in two-person zero-sum game and its proof by John von Neumann. Von Neumann's original proof used the Brouwer fixed-point theorem on continuous mappings into compact convex sets, which became a standard method in game theory and mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * Mathematical Reviews * Zentralblatt MATH * * ISI Alerting Services * CompuMath Citation Index *

Uniformization (set Theory)
In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if R is a subset of X\times Y, where X and Y are Polish spaces, then there is a subset f of R that is a partial function from X to Y, and whose domain (the set of all x such that f(x) exists) equals : \\, Such a function is called a uniformizing function for R, or a uniformization of R. To see the relationship with the axiom of choice, observe that R can be thought of as associating, to each element of X, a subset of Y. A uniformization of R then picks exactly one element from each such subset, whenever the subset is non-empty. Thus, allowing arbitrary sets ''X'' and ''Y'' (rather than just Polish spaces) would make the axiom of uniformization equivalent to the axiom of choice. A pointclass \boldsymbol is said to have the uniformization property if every relation R in \boldsymbol can be uniformized by a partial function in \boldsymbol. The uniformizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number 2 is related to numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Property Of Baire
A subset A of a topological space X has the property of Baire (Baire property, named after René-Louis Baire), or is called an almost open set, if it differs from an open set by a meager set; that is, if there is an open set U\subseteq X such that A \bigtriangleup U is meager (where \bigtriangleup denotes the symmetric difference).. Definitions A subset A \subseteq X of a topological space X is called almost open and is said to have the property of Baire or the Baire property if there is an open set U\subseteq X such that A \bigtriangleup U is a meager subset, where \bigtriangleup denotes the symmetric difference. Further, A has the Baire property in the restricted sense if for every subset E of X the intersection A\cap E has the Baire property relative to E. Properties The family of sets with the property of Baire forms a σ-algebra. That is, the complement of an almost open set is almost open, and any countable union or intersection of almost open sets is again almos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Set Property
In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a perfect set. As nonempty perfect sets in a Polish space always have the cardinality of the continuum, and the reals form a Polish space, a set of reals with the perfect set property cannot be a counterexample to the continuum hypothesis, stated in the form that every uncountable set of reals has the cardinality of the continuum. The Cantor–Bendixson theorem states that closed sets of a Polish space ''X'' have the perfect set property in a particularly strong form: any closed subset of ''X'' may be written uniquely as the disjoint union of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable open set. The a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measurable
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called ''n''-dimensional volume, ''n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set ''A'' is here denoted by ''λ''(''A''). Henri Lebesgue described this measure in the year 1901, followed the next year by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq\mathbb, the Lebesgue oute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axiom Of Determinacy
In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of a certain type is determined; that is, one of the two players has a winning strategy. Steinhaus and Mycielski's motivation for AD was its interesting consequences, and suggested that AD could be true in the smallest natural model L(R) of a set theory, which accepts only a weak form of the axiom of choice (AC) but contains all real and all ordinal numbers. Some consequences of AD followed from theorems proved earlier by Stefan Banach and Stanisław Mazur, and Morton Davis. Mycielski and Stanisław Świerczkowski contributed another one: AD implies that all sets of real numbers are Lebesgue measurable. Later Donald A. Martin and others proved more important consequences, especially in descriptive set theory. In 1988, John R. Steel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]