Polyominoes
   HOME
*



picture info

Polyominoes
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of " dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentomino
Derived from the Greek word for ' 5', and "domino", a pentomino (or 5-omino) is a polyomino of order 5, that is, a polygon in the plane made of 5 equal-sized squares connected edge-to-edge. When rotations and reflections are not considered to be distinct shapes, there are 12 different '' free'' pentominoes. When reflections are considered distinct, there are 18 '' one-sided'' pentominoes. When rotations are also considered distinct, there are 63 ''fixed'' pentominoes. Pentomino tiling puzzles and games are popular in recreational mathematics. Usually, video games such as ''Tetris'' imitations and ''Rampart'' consider mirror reflections to be distinct, and thus use the full set of 18 one-sided pentominoes. Each of the twelve pentominoes satisfies the Conway criterion; hence every pentomino is capable of tiling the plane. Each chiral pentomino can tile the plane without being reflected. History The earliest puzzle containing a complete set of pentominoes appeared in Henry D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polycube
upAll 8 one-sided tetracubes – if chirality is ignored, the bottom 2 in grey are considered the same, giving 7 free tetracubes in total A puzzle involving arranging nine L tricubes into a 3×3 cube A polycube is a solid figure formed by joining one or more equal cubes face to face. Polycubes are the three-dimensional analogues of the planar polyominoes. The Soma cube, the Bedlam cube, the Diabolical cube, the Slothouber–Graatsma puzzle, and the Conway puzzle are examples of packing problems based on polycubes. Enumerating polycubes A chiral pentacube Like polyominoes, polycubes can be enumerated in two ways, depending on whether chiral pairs of polycubes are counted as one polycube or two. For example, 6 tetracubes have mirror symmetry and one is chiral, giving a count of 7 or 8 tetracubes respectively. Unlike polyominoes, polycubes are usually counted with mirror pairs distinguished, because one cannot turn a polycube over to reflect it as one can a polyomino give ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Games (column)
Over a period of 24 years (January 1957 – December 1980), Martin Gardner wrote 288 consecutive monthly "Mathematical Games" columns for ''Scientific American'' magazine. During the next years, through June 1986, Gardner wrote 9 more columns, bringing his total to 297, as other authors wrote most of the "Mathematical Games" columns. The table below lists Gardner's columns. Twelve of Gardner's columns provided the cover art for that month's magazine, indicated by "over in the table with a hyperlink to the cover. Other articles by Gardner Gardner wrote 5 other articles for ''Scientific American''. His flexagon article in December 1956 was in all but name the first article in the series of ''Mathematical Games'' columns and led directly to the series which began the following month.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhex (mathematics)
In recreational mathematics, a polyhex is a polyform with a regular hexagon (or 'hex' for short) as the base form, constructed by joining together 1 or more hexagons. Specific forms are named by their number of hexagons: ''monohex'', ''dihex'', ''trihex'', ''tetrahex'', etc. They were named by David Klarner who investigated them. Each individual polyhex tile and tessellation polyhexes and can be drawn on a regular hexagonal tiling. Construction rules The rules for joining hexagons together may vary. Generally, however, the following rules apply: #Two hexagons may be joined only along a common edge, and must share the entirety of that edge. #No two hexagons may overlap. #A polyhex must be connected. Configurations of disconnected basic polygons do not qualify as polyhexes. #The mirror image of an asymmetric polyhex is not considered a distinct polyhex (polyhex are "double sided"). Tessellation properties All of the polyhexes with fewer than five hexagons can form at least on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fairy Chess Review
''Fairy Chess Review'' () was a magazine that was devoted principally to fairy chess problems, but also included extensive original results on related questions in mathematical recreations, such as knight's tours and polyominoes (under the title of "dissections"), and chess-related word puzzles. It appeared six times per year and nine volumes were published, from 1930 to 1958. Although they are often referred to under the title ''Fairy Chess Review'', the first two volumes (August 1930 to June 1936) in fact bore the title ''The Problemist Fairy Chess Supplement''. These were published by the British Chess Problem Society (BCPS) as an offshoot of their magazine ''The Problemist'' which began in 1926. The first two volumes were supported financially by the Falmouth businessman Charles Masson Fox who was also a problemist, who died in 1936. From volume 3 onwards the ''FCR'' was independent of the BCPS, although most of its contributors were members. The editor from 1930 until August ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyiamond
A polyiamond (also polyamond or simply iamond, or sometimes triangular polyomino) is a polyform whose base form is an equilateral triangle. The word ''polyiamond'' is a back-formation from ''diamond'', because this word is often used to describe the shape of a pair of equilateral triangles placed base to base, and the initial 'di-' looks like a Greek prefix meaning 'two-' (though ''diamond'' actually derives from Greek '' ἀδάμας'' - also the basis for the word "adamant"). The name was suggested by recreational mathematics writer Thomas H. O'Beirne in ''New Scientist'' 1961 number 1, page 164. Counting The basic combinatorial question is, How many different polyiamonds exist with a given number of cells? Like polyominoes, polyiamonds may be either free or one-sided. Free polyiamonds are invariant under reflection as well as translation and rotation. One-sided polyiamonds distinguish reflections. The number of free ''n''-iamonds for ''n'' = 1, 2, 3, ... is: :1, 1, 1, 3, 4, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyform
In recreational mathematics, a polyform is a plane (mathematics), plane figure or solid compound constructed by joining together identical basic polygons. The basic polygon is often (but not necessarily) a convex polygon, convex plane-filling polygon, such as a Square (geometry), square or a triangle. More specific names have been given to polyforms resulting from specific basic polygons, as detailed in the table below. For example, a square basic polygon results in the well-known polyominoes. Construction rules The rules for joining the polygons together may vary, and must therefore be stated for each distinct type of polyform. Generally, however, the following rules apply: #Two basic polygons may be joined only along a common edge, and must share the entirety of that edge. #No two basic polygons may overlap. #A polyform must be connected (that is, all one piece; see connected graph, connected space). Configurations of disconnected basic polygons do not qualify as polyforms. #The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Percolation
Percolation (from Latin ''percolare'', "to filter" or "trickle through"), in physics, chemistry and materials science, refers to the movement and filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connectivity of many systems modeled as lattices or graphs, analogous to connectivity of lattice components in the filtration problem that modulates capacity for percolation. Background During the last decades, percolation theory, the mathematical study of percolation, has brought new understanding and techniques to a broad range of topics in physics, materials science, complex networks, epidemiology, and other fields. For example, in geology, percolation refers to filtration of water through soil and permeable rocks. The water flows to recharge the groundwater in the water table and aquifers. In places where infiltration basins or septic drain fields are planned to dispose of substantial amounts of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Branching (polymer Chemistry)
In polymer chemistry, branching is the regular or irregular attachment of side chains to a polymer's backbone chain. It occurs by the replacement of a substituent (e.g. a hydrogen atom) on a monomer subunit by another covalently-bonded chain of that polymer; or, in the case of a graft copolymer, by a chain of another type. Branched polymers have more compact and symmetrical molecular conformations, and exhibit intra-heterogeneous dynamical behavior with respect to the unbranched polymers. In crosslinking rubber by vulcanization, short sulfur branches link polyisoprene chains (or a synthetic variant) into a multiple-branched thermosetting elastomer. Rubber can also be so completely vulcanized that it becomes a rigid solid, so hard it can be used as the bit in a smoking pipe. Polycarbonate chains can be crosslinked to form the hardest, most impact-resistant thermosetting plastic, used in safety glasses. Branching may result from the formation of carbon-carbon or various othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Physics
Statistical physics is a branch of physics that evolved from a foundation of statistical mechanics, which uses methods of probability theory and statistics, and particularly the Mathematics, mathematical tools for dealing with large populations and approximations, in solving physical problems. It can describe a wide variety of fields with an inherently stochastic nature. Its applications include many problems in the fields of physics, biology, chemistry, and neuroscience. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion. Statistical mechanics develop the Phenomenology (particle physics), phenomenological results of thermodynamics from a probabilistic examination of the underlying microscopic systems. Historically, one of the first topics in physics where statistical methods were applied was the field of classical mechanics, which is concerned with the motion of particles or objects when subjected to a force. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in ''n'' dimensions is equal to \sqrt. An ''n''-dimensional hypercube is more commonly referred to as an ''n''-cube or sometimes as an ''n''-dimensional cube. The term measure polytope (originally from Elte, 1912) is also used, notably in the work of H. S. M. Coxeter who also labels the hypercubes the γn polytopes. The hypercube is the special case of a hyperrectangle (also called an ''n-orthotope''). A ''unit hypercube'' is a hypercube whose side has length one unit. Often, the hypercube whose corners (or ''vertices'') are the 2''n'' points in R''n'' with each coordinate equal to 0 or 1 is called ''the'' unit hypercube. Construction A hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]