Permutation Class
   HOME
*





Permutation Class
In the study of permutations and permutation patterns, a permutation class is a set C of permutations for which every pattern within a permutation in C is also in C. In other words, a permutation class is a hereditary property of permutations, or a downset in the permutation pattern order. A permutation class may also be known as a pattern class, closed class, or simply class of permutations. Every permutation class can be defined by the minimal permutations which do not lie inside it, its ''basis''., Definition 8.1.3, p. 318. A principal permutation class is a class whose basis consists of only a single permutation. Thus, for instance, the stack-sortable permutations form a principal permutation class, defined by the forbidden pattern 231. However, some other permutation classes have bases with more than one pattern or even with infinitely many patterns. A permutation class that does not include all permutations is called proper. In the late 1980s, Richard Stanley and Herbert Wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Pattern
In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the permutation to the digit sequence 123...; for instance the digit sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to ''contain'' σ as a ''pattern'' if some subsequence of the digits of π has the same relative order as all of the digits of σ. For instance, permutation π contains the pattern 213 whenever π has three digits ''x'', ''y'', and ''z'' that appear within π in the order ''x''...''y''...''z'' but whose values are ordered as ''y'' < ''x'' < ''z'', the same as the ordering of the values in the permutation 213. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hereditary Property
In mathematics, a hereditary property is a property of an object that is inherited by all of its subobjects, where the meaning of ''subobject'' depends on the context. These properties are particularly considered in topology and graph theory, but also in set theory. In topology In topology, a topological property is said to be ''hereditary'' if whenever a topological space has that property, then so does every Subspace topology, subspace of it. If the latter is true only for Closed set, closed subspaces, then the property is called ''weakly hereditary'' or ''closed-hereditary''. For example, second countability and metrisability are hereditary properties. sequential space, Sequentiality and Compact space, Hausdorff compactness are weakly hereditary, but not hereditary. Connected space, Connectivity is not weakly hereditary. If ''P'' is a property of a topological space ''X'' and every subspace also has property ''P'', then ''X'' is said to be "hereditarily ''P''". In combinatoric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (order Theory)
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory. Basic definitions A subset of a partially ordered set (P, \leq) is an ideal, if the following conditions hold: # is non-empty, # for every ''x'' in and ''y'' in ''P'', implies that ''y'' is in  ( is a lower set), # for every ''x'', ''y'' in , there is some element ''z'' in , such that and  ( is a directed set). While this is the most general way to define an ideal for arbitrary posets, it was originally defined for lattices only. In this case, the following equivalent definition can be given: a subset of a lattice (P, \leq) is an ideal if and only if it is a lower set that is closed under finite joins ( suprema); that is, it is none ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stack-sortable Permutation
In mathematics and computer science, a stack-sortable permutation (also called a tree permutation) is a permutation whose elements may be sorted by an algorithm whose internal storage is limited to a single stack data structure. The stack-sortable permutations are exactly the permutations that do not contain the permutation pattern 231; they are counted by the Catalan numbers, and may be placed in bijection with many other combinatorial objects with the same counting function including Dyck paths and binary trees. Sorting with a stack The problem of sorting an input sequence using a stack was first posed by , who gave the following linear time algorithm (closely related to algorithms for the later all nearest smaller values problem): *Initialize an empty stack *For each input value ''x'': **While the stack is nonempty and ''x'' is larger than the top item on the stack, pop the stack to the output **Push ''x'' onto the stack *While the stack is nonempty, pop it to the output Knuth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Richard P
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include " Richie", "Dick", " Dickon", " Dickie", "Rich", " Rick", " Rico", " Ricky", and more. Richard is a common English, German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Catalan "Ricard" and the Italian "Riccardo", among others (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Andersen (other) * Richard Anderson (other) * Richard Cartwright (disambiguati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herbert Wilf
Herbert Saul Wilf (June 13, 1931 – January 7, 2012) was a mathematician, specializing in combinatorics and graph theory. He was the Thomas A. Scott Professor of Mathematics in Combinatorial Analysis and Computing at the University of Pennsylvania. He wrote numerous books and research papers. Together with Neil Calkin he founded '' The Electronic Journal of Combinatorics'' in 1994 and was its editor-in-chief until 2001. Biography Wilf was the author of numerous papers and books, and was adviser and mentor to many students and colleagues. His collaborators include Doron Zeilberger and Donald Knuth. One of Wilf's former students is Richard Garfield, the creator of the collectible card game '' Magic: The Gathering''. He also served as a thesis advisor for E. Roy Weintraub in the late 1960s. Wilf died of a progressive neuromuscular disease in 2012. Awards In 1998, Wilf and Zeilberger received the Leroy P. Steele Prize for Seminal Contribution to Research for their jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that . Every subset of the natural numbers has a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanley–Wilf Conjecture
The Stanley–Wilf conjecture, formulated independently by Richard P. Stanley and Herbert Wilf in the late 1980s, states that the growth rate of every proper permutation class is singly exponential. It was proved by and is no longer a conjecture. Marcus and Tardos actually proved a different conjecture, due to , which had been shown to imply the Stanley–Wilf conjecture by . Statement The Stanley–Wilf conjecture states that for every permutation ''β'', there is a constant ''C'' such that the number , ''S''''n''(''β''), of permutations of length ''n'' which avoid ''β'' as a permutation pattern is at most ''C''''n''. As observed, this is equivalent to the convergence of the limit :\lim_ \sqrt The upper bound given by Marcus and Tardos for ''C'' is exponential in the length of ''β''. A stronger conjecture of had stated that one could take ''C'' to be , where ''k'' denotes the length of ''β'', but this conjecture was disproved for the permutation by . Indeed, has s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adam Marcus (mathematician)
Adam Wade Marcus (born 1979) is an American mathematician. He holds the Chair of Combinatorial Analysis in the Institute of Mathematics at the École Polytechnique Fédérale de Lausanne. The team of Marcus, Daniel Spielman and Nikhil Srivastava was awarded the Pólya Prize in 2014 for their resolution of the Kadison–Singer problem and later the Michael and Sheila Held Prize in 2021 for their solution to long-standing conjectures in the study of Ramanujan graphs. History Marcus grew up in Marietta, Georgia and was a boarding student at the Darlington School in Rome, Georgia. He attended the Washington University in St. Louis for his undergraduate degree, where he was a Compton Fellow. He then completed his doctoral studies under the supervision of Prasad Tetali at the Georgia Institute of Technology. Following his graduation in 2008, he spent four years as a Gibbs Assistant Professor in Applied Mathematics at Yale University. In 2012, Marcus cofounded Crisply, an analytics comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gábor Tardos
Gábor Tardos (born 11 July 1964) is a Hungarian mathematician, currently a professor at Central European University and previously a Canada Research Chair at Simon Fraser University. He works mainly in combinatorics and computer science. He is the younger brother of Éva Tardos. Education and career Gábor Tardos received his PhD in Mathematics from Eötvös University, Budapest in 1988. His counsellors were László Babai and Péter Pálfy. He held postdoctoral posts at the University of Chicago, Rutgers University, University of Toronto and the Princeton Institute for Advanced Study. From 2005 to 2013, he served as a Canada Research Chair of discrete and computational geometry at Simon Fraser University. He then returned to Budapest to the Alfréd Rényi Institute of Mathematics where he has served as a research fellow since 1991. Mathematical results Tardos started with a result in universal algebra: he exhibited a maximal clone of order-preserving operations that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilf Equivalence
In the study of permutations and permutation patterns, Wilf equivalence is an equivalence relation on permutation classes. Two permutation classes are Wilf equivalent when they have the same numbers of permutations of each possible length, or equivalently if they have the same generating functions. The equivalence classes for Wilf equivalence are called Wilf classes; they are the combinatorial class In mathematics, a combinatorial class is a countable set of mathematical objects, together with a size function mapping each object to a non-negative integer, such that there are finitely many objects of each size. Counting sequences and isomorphi ...es of permutation classes. The counting functions and Wilf equivalences among many specific permutation classes are known. Wilf equivalence may also be described for individual permutations rather than permutation classes. In this context, two permutations are said to be Wilf equivalent if the principal permutation classes formed by forbi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]