Periodic Semigroup
   HOME
*



picture info

Periodic Semigroup
In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups. Structure The monogenic semigroup generated by the singleton set is denoted by \langle a \rangle . The set of elements of \langle a \rangle is . There are two possibilities for the monogenic semigroup \langle a \rangle : * ''a'' ''m'' = ''a'' ''n'' ⇒ ''m'' = ''n''. * There exist ''m'' ≠ ''n'' such that ''a'' ''m'' = ''a'' ''n''. In the former case \langle a \rangle is isomorphic to the semigroup ( , + ) of natural numbers under addition. In such a case, \langle a \rangle is an ''infinite monogenic semigroup'' and the element ''a'' is said to have ''infinite order''. It is sometimes called the ''free monogenic semigroup'' because it is also a free semigroup with one generator. In the latter case let ''m'' be the smallest positive integer such that ''a'' ''m'' = ''a'' ''x'' for some positive integer ''x'' ≠ ''m'', and let '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monogenic Semigroup Order 9 Period 6
Monogenic may refer to: * Monogenic signal, in the theory of analytic signals * Monogenic disorder, disease, inheritance, or trait, a single gene disorder resulting from a single mutated gene ** Monogenic diabetes, or maturity-onset diabetes of the young (MODY), forms of diabetes caused by mutations in an autosomal dominant gene * Monogenic field, in mathematics, an algebraic number field ''K'' * Monogenic function, a function in an algebra over a field * Monogenic polynomial, an alternate name for monic polynomial * Monogenic semigroup, in mathematics, a semigroup generated by a set containing only a single element * Monogenic system, in classical mechanics, a physical system See also * Monogenous (other) * Monogenetic (other) Monogenetic may refer to: * Monogenetic in biology, of or pertaining to monogenesis (Mendelian inheritance) * Monogenetic volcanic field in geology, a cluster of volcanoes that only erupted once * Monogenetic theory of pidgins in ling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Of A Semigroup
Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learning * Kernelization, a technique for designing efficient algorithms ** Kernel, a routine that is executed in a vectorized loop, for example in general-purpose computing on graphics processing units *KERNAL, the Commodore operating system Mathematics Objects * Kernel (algebra), a general concept that includes: ** Kernel (linear algebra) or null space, a set of vectors mapped to the zero vector ** Kernel (category theory), a generalization of the kernel of a homomorphism ** Kernel (set theory), an equivalence relation: partition by image under a function ** Difference kernel, a binary equalizer: the kernel of the difference of two functions Functions * Kernel (geometry), the set of points within a polygon from which the whole polygon boun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Classes Of Semigroups
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cycle Detection
In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function that maps a finite set to itself, and any initial value in , the sequence of iterated function values : x_0,\ x_1=f(x_0),\ x_2=f(x_1),\ \dots,\ x_i=f(x_),\ \dots must eventually use the same value twice: there must be some pair of distinct indices and such that . Once this happens, the sequence must continue periodically, by repeating the same sequence of values from to . Cycle detection is the problem of finding and , given and . Several algorithms for finding cycles quickly and with little memory are known. Robert W. Floyd's tortoise and hare algorithm moves two pointers at different speeds through the sequence of values until they both point to equal values. Alternatively, Brent's algorithm is based on the idea of exponential search. Both Floyd's and Brent's algorithms use only a constant number of memory ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aperiodic Semigroup
In mathematics, an aperiodic semigroup is a semigroup ''S'' such that every element ''x'' ∈ ''S'' is aperiodic, that is, for each ''x'' there exists a positive integer ''n'' such that ''x''''n'' = ''x''''n'' + 1. An aperiodic monoid is an aperiodic semigroup which is a monoid. Finite aperiodic semigroups A finite semigroup is aperiodic if and only if it contains no nontrivial subgroups, so a synonym used (only?) in such contexts is group-free semigroup. In terms of Green's relations, a finite semigroup is aperiodic if and only if its ''H''-relation is trivial. These two characterizations extend to group-bound semigroups. A celebrated result of algebraic automata theory due to Marcel-Paul Schützenberger asserts that a language is star-free if and only if its syntactic monoid is finite and aperiodic.Schützenberger, Marcel-Paul, "On finite monoids having only trivial subgroups," ''Information and Control'', Vol 8 No. 2, pp. 190–194, 1965. A consequence of the Krohn–Rho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Epigroup
In abstract algebra, an epigroup is a semigroup in which every element has a power that belongs to a subgroup. Formally, for all ''x'' in a semigroup ''S'', there exists a positive integer ''n'' and a subgroup ''G'' of ''S'' such that ''x''''n'' belongs to ''G''. Epigroups are known by wide variety of other names, including quasi-periodic semigroup, group-bound semigroup, completely π-regular semigroup, strongly π-regular semigroup (sπr), or just π-regular semigroup (although the latter is ambiguous). More generally, in an arbitrary semigroup an element is called ''group-bound'' if it has a power that belongs to a subgroup. Epigroups have applications to ring theory. Many of their properties are studied in this context. Epigroups were first studied by Douglas Munn in 1961, who called them ''pseudoinvertible''. Properties * Epigroups are a generalization of periodic semigroups, thus all finite semigroups are also epigroups. * The class of epigroups also contains al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals. Abstract structures include data structures in computer science and musical form. Types of structure include a hierarchy (a cascade of one-to-many relationships), a network featuring many-to-many links, or a lattice featuring connections between components that are neighbors in space. Load-bearing Buildings, aircraft, skeletons, anthills, beaver dams, bridges and salt domes are all examples of load-bearing structures. The results of construction are divided into buildings and non-building structures, and make up the infrastructure of a human society. Built structures are broadly divided by their varying design approaches and standards, into categories including building structures, arch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Ideal
In the branch of abstract algebra known as ring theory, a minimal right ideal of a ring ''R'' is a nonzero right ideal which contains no other nonzero right ideal. Likewise, a minimal left ideal is a nonzero left ideal of ''R'' containing no other nonzero left ideals of ''R'', and a minimal ideal of ''R'' is a nonzero ideal containing no other nonzero two-sided ideal of ''R'' . In other words, minimal right ideals are minimal elements of the poset of nonzero right ideals of ''R'' ordered by inclusion. The reader is cautioned that outside of this context, some posets of ideals may admit the zero ideal, and so the zero ideal could potentially be a minimal element in that poset. This is the case for the poset of prime ideals of a ring, which may include the zero ideal as a minimal prime ideal. Definition The definition of a minimal right ideal ''N'' of a ring ''R'' is equivalent to the following conditions: *''N'' is nonzero and if ''K'' is a right ideal of ''R'' with , then either ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]