HOME
*



picture info

Pyrolite
Pyrolite is a term used to characterize a model composition of the Earth's mantle. This model is based on that a pyrolite source can produce the Mid-Ocean Ridge Basalt by partial melting. It was first proposed by Ted Ringwood (1962) as being 1 part basalt and 4 parts harzburgite, but later was revised to being 1 part tholeiitic basalt and 3 parts dunite. The term is derived from the mineral names PYR-oxene and OL-ivine. However, whether pyrolite is representative of the Earth's mantle remains debated. Chemical composition and phase transition The major elements composition of pyrolite is about 44.71 weight percent (wt%) SiO2, 3.98 wt% Al2O3, 8.18 wt% FeO, 3.17 wt% CaO, 38.73 wt% MgO, 0.13 wt% Na2O. 1) A pyrolitic Upper Mantle is mainly composed of olivine (~60 volume percent (vol%)), clinopyroxene, orthopyroxene, and garnet. Pyroxene would gradually dissolved into garnet and form majoritic garnet. 2) A pyrolitic Mantle Transition Zone is mainly composed of 60 vol% olivine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lower Mantle (Earth)
The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. The preliminary reference Earth model (PREM) separates the lower mantle into three sections, the uppermost (660–770 km), mid-lower mantle (770–2700 km), and the D layer (2700–2900 km). Pressure and temperature in the lower mantle range from 24–127 GPa and 1900–2600 K. It has been proposed that the composition of the lower mantle is pyrolitic, containing three major phases of bridgmanite, ferropericlase, and calcium-silicate perovskite. The high pressure in the lower mantle has been shown to induce a spin transition of iron-bearing bridgmanite and ferropericlase, which may affect both mantle plume dynamics and lower mantle chemistry. The upper boundary is defined by the sharp increase in seismic wave velocities and density at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper Mantle (Earth)
The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from approximately at the upper boundary with the crust to approximately at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending upon depth. Seismic structure The density profile through Earth is determined by the velocity of seismic waves. Density increases progressively in each layer, largely due to compression of the rock at increased depths. Abrupt changes in density occur where the material composition changes. The upper mantle begins just beneath the crust and ends at the top of the lower mantle. The upper mantle causes the tectonic plates to move. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transition Zone (Earth)
The transition zone is part of the Earth's mantle, and is located between the lower mantle and the upper mantle, between a depth of 410 and 660 km (250 to 400 mi). The Earth's mantle, including the transition zone, consists primarily of peridotite, an ultramafic igneous rock. The mantle was divided into the upper mantle, transition zone, and lower mantle as a result of sudden seismic-velocity discontinuities at depths of 410 and 660 km (250 to 400 mi). This is thought to occur as a result of rearrangement of grains in olivine (which constitutes a large portion of peridotite) at a depth of 410 km, to form a denser crystal structure as a result of the increase in pressure with increasing depth. Below a depth of 660 km, evidence suggests due to pressure changes ringwoodite minerals change into two new denser phases, bridgmanite and periclase. This can be seen using body waves from earthquakes, which are converted, reflected or refracted at the boundar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ted Ringwood
Alfred Edward "Ted" Ringwood FRS FAA (19 April 1930 – 12 November 1993) was an Australian experimental geophysicist and geochemist, and the 1988 recipient of the Wollaston Medal. The mineral ringwoodite is named after him. Early life and study Ringwood was born in Kew, only child of Alfred Edward Ringwood. He attended Hawthorn West State School where he played cricket and Australian Rules football. In 1943 he was successful in gaining a scholarship to Geelong Grammar School where he boarded. On matriculation, he enrolled in Geology a science degree at the University of Melbourne where he held a Commonwealth Government Scholarship, and was awarded a resident scholarship at Trinity College. He represented the college and the university in football. He obtained First Class Honours degree in Geology and began a MSc degree in field-mapping and petrology of the Devonian Snowy River volcanics of northeastern Victoria, graduating with Honours in 1953. Ringwood then undertook a PhD, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ringwoodite
Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a magnesium iron silicate). Ringwoodite is notable for being able to contain hydroxide ions (oxygen and hydrogen atoms bound together) within its structure. In this case two hydroxide ions usually take the place of a magnesium ion and two oxide ions. Combined with evidence of its occurrence deep in the Earth's mantle, this suggests that there is from one to three times the world ocean's equivalent of water in the mantle transition zone from 410 to 660 km deep. This mineral was first identified in the Tenham meteorite in 1969, and is inferred to be present in large quantities in the Earth's mantle. Ringwoodite was named after the Australian earth scientist Ted Ringwood (1930–1993), who studied polymorphic phase transitions in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Omphacite
Omphacite is a member of the clinopyroxene group of silicate minerals with formula: ( Ca, Na)( Mg, Fe2+, Al) Si2 O6. It is a variably deep to pale green or nearly colorless variety of clinopyroxene. It normally appears in eclogite, which is the high-pressure metamorphic rock of basalt. Omphacite is the solid solution of Fe-bearing diopside and jadeite. It crystallizes in the monoclinic system with prismatic, typically twinned forms, though usually anhedral. Its space group can be P2/n or C2/c depending on the thermal history. It exhibits the typical near 90° pyroxene cleavage. It is brittle with specific gravity of 3.29 to 3.39 and a Mohs hardness of 5 to 6. Formation and occurrence Omphacite is the dominated phase in the subducted oceanic crust in the Earth's upper mantle. The Mid-Ocean Ridge Basalt, which makes up oceanic crust, goes through ultrahigh-pressure metamorphic process and transforms to eclogite at depth ~60 km in the subduction zones. The major minera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eclogite
Eclogite () is a metamorphic rock containing garnet (almandine- pyrope) hosted in a matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum and, rarely, diamond. The chemistry of primary and accessory minerals is used to classify three types of eclogite (A, B, and C). The broad range of eclogitic compositions has led a longstanding debate on the origin of eclogite xenoliths as subducted, altered oceanic crust. Origins Eclogites typically result from high to ultrahigh pressure metamorphism of mafic rock at low thermal gradients of < as it is subducted to the lower crust to upper mantle depths in a subduction zone.


Classification

...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eclogite Phase Proportion
Eclogite () is a metamorphic rock containing garnet (almandine-pyrope) hosted in a matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum and, rarely, diamond. The chemistry of primary and accessory minerals is used to classify three types of eclogite (A, B, and C). The broad range of eclogitic compositions has led a longstanding debate on the origin of eclogite xenoliths as subducted, altered oceanic crust. Origins Eclogites typically result from high to ultrahigh pressure metamorphism of mafic rock at low thermal gradients of < as it is subducted to the lower crust to depths in a subduction zone.


Class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



picture info

Preliminary Reference Earth Model
The preliminary reference Earth model (PREM) plots the average of Earth's properties by depth. It includes a table of Earth properties, including elastic properties, attenuation, density, pressure, and gravity. PREM has been widely used as the basis for seismic tomography and related global geophysical models. It incorporates anelastic dispersion and anisotropy and therefore it is frequency-dependent and transversely isotropic for the upper mantle. PREM was developed by Adam M. Dziewonski and Don L. Anderson in response to guidelines of a "Standard Earth Model Committee" of the International Association of Geodesy The International Association of Geodesy (IAG) is a constituent association of the International Union of Geodesy and Geophysics. Overview The precursors to the IAG were arc measurement campaigns. The IAG was founded in 1862 as the ''Mitteleuro ... (IAG) and the International Association of Seismology and Physics of the Earth's Interior (IASPEI) Other Earth r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geothermal Gradient
Geothermal gradient is the rate of temperature change with respect to increasing depth in Earth's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plate boundaries, temperature rises in about 25–30 °C/km (72–87 °F/mi) of depth near the surface in most of the world. However, in some cases the temperature may drop with increasing depth, especially near the surface, a phenomenon known as ''inverse'' or ''negative'' geothermal gradient. The effects of weather, sun, and season only reach a depth of approximately 10-20 metres. Strictly speaking, ''geo''-thermal necessarily refers to Earth but the concept may be applied to other planets. In SI units, the geothermal gradient is expressed as °C/km, K/km, or mK/m. These are all equivalent. Earth's internal heat comes from a combination of residual heat from planetary accretion, heat produced through radioactive decay, latent heat f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S-wave
__NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. S waves are transverse waves, meaning that the direction of particle motion of a S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress. Therefore, S waves cannot propagate in liquids with zero (or very low) viscosity; however, they may propagate in liquids with high viscosity. The name ''secondary wave'' comes from the fact that they are the second type of wave to be detected by an earthquake seismograph, after the compressional primary wave, or P wave, because S waves travel more slowly in solids. Unlike P waves, S waves cannot travel through the molten outer core of the Earth, and this causes a shadow zone for S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P-wave
A P wave (primary wave or pressure wave) is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any affected location or at a seismograph. P waves may be transmitted through gases, liquids, or solids. Nomenclature The name ''P wave'' can stand for either pressure wave (as it is formed from alternating compressions and rarefactions) or primary wave (as it has high velocity and is therefore the first wave to be recorded by a seismograph). The name ''S wave'' represents another seismic wave propagation mode, standing for secondary or shear wave. Seismic waves in the Earth Primary and secondary waves are body waves that travel within the Earth. The motion and behavior of both P and S waves in the Earth are monitored to probe the interior structure of the Earth. Discontinuities in velocity as a function of depth are indicative of ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]