HOME
*





Proof Calculi
In mathematical logic, a proof calculus or a proof system is built to prove statements. Overview A proof system includes the components: * Language: The set ''L'' of formulas admitted by the system, for example, propositional logic or first-order logic. * Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. * Axioms: Formulas in ''L'' assumed to be valid. All theorems are derived from axioms. Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for radically different logics. For example, a paradigmatic case is the sequent calculus, which can be used to express the consequence relations of both intuitionistic logic and relevance logic. Thus, loosely speaking, a proof calculus is a template or design pattern, characterized by a certain style of formal inference, that may be specialized to produce specific formal systems, namely by specifying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical Greece, Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of philosophy within the Lyceum (classical), Lyceum and the wider Aristotelianism, Aristotelian tradition. His writings cover many subjects including Physics (Aristotle), physics, biology, zoology, metaphysics, logic, ethics, aesthetics, Poetics (Aristotle), poetry, theatre, music, rhetoric, psychology, linguistics, economics, politics, meteorology, History of geology, geology, and government. Aristotle provided a complex synthesis of the various philosophies existing prior to him. It was above all from his teachings that Western culture, the West inherited its intellectual lexicon, as well as problems and methods of inquiry. As a result, his philosophy has exerted a unique influence on almost every form of knowledge in the West a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Display Logic
In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory. Analytic proof The notion of analytic proof was introduced into proof theory by Gerhard Gentzen for the sequent calculus; the analytic proofs are those that are cut-elimination theorem, cut-free. His natural deduction calculus also supports a notion of analytic proof, as was shown by Dag Prawitz; the definition is slightly more complex—the analytic proofs are the Natural deduction#Consistency.2C completeness.2C and normal fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deep Inference
Deep inference names a general idea in structural proof theory that breaks with the classical sequent calculus by generalising the notion of structure to permit inference to occur in contexts of high structural complexity. The term ''deep inference'' is generally reserved for proof calculi where the structural complexity is unbounded; in this article we will use non-shallow inference to refer to calculi that have structural complexity greater than the sequent calculus, but not unboundedly so, although this is not at present established terminology. Deep inference is not important in logic outside of structural proof theory, since the phenomena that lead to the proposal of formal systems with deep inference are all related to the cut-elimination theorem. The first calculus of deep inference was proposed by Kurt Schütte,Kurt Schütte. Proof Theory. Springer-Verlag, 1977. but the idea did not generate much interest at the time. Nuel Belnap proposed display logic in an attem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cirquent Calculus
Cirquent calculus is a proof calculus that manipulates graph-style constructs termed ''cirquents'', as opposed to the traditional tree-style objects such as formulas or sequents. Cirquents come in a variety of forms, but they all share one main characteristic feature, making them different from the more traditional objects of syntactic manipulation. This feature is the ability to explicitly account for possible sharing of subcomponents between different components. For instance, it is possible to write an expression where two subexpressions ''F'' and ''E'', while neither one is a subexpression of the other, still have a common occurrence of a subexpression ''G'' (as opposed to having two different occurrences of ''G'', one in ''F'' and one in ''E''). Overview The approach was introduced by G. Japaridze in as an alternative proof theory capable of "taming" various nontrivial fragments of his computability logic, which had otherwise resisted all axiomatization attempts within the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof Net
In proof theory, proof nets are a geometrical method of representing proofs that eliminates two forms of ''bureaucracy'' that differentiate proofs: (A) irrelevant syntactical features of regular proof calculi, and (B) the order of rules applied in a derivation. In this way, the formal properties of proof identity correspond more closely to the intuitively desirable properties. Proof nets were introduced by Jean-Yves Girard. This distinguishes proof nets from regular proof calculi such as the natural deduction calculus and the sequent calculus, where these phenomena are present. For instance, these two linear logic proofs are identical: And their corresponding nets will be the same. Correctness criteria Several correctness criteria are known to check if a sequential proof structure (i.e. something which seems to be a proof net) is actually a concrete proof structure (i.e. something which encodes a valid derivation in linear logic). The first such criterion is the long-tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Graph
An existential graph is a type of diagrammatic or visual notation for logical expressions, proposed by Charles Sanders Peirce, who wrote on graphical logic as early as 1882,Peirce, C. S., "n Junctures and Fractures in Logic (editors' title for MS 427 (the new numbering system), Fall–Winter 1882), and "Letter, Peirce to O. H. Mitchell" (L 294, 21 December 1882), '' Writings of Charles S. Peirce'', v. 4, "Junctures" on pp. 391–393 (Googl preview and the letter on pp. 394–399 (Googl preview. See Sowa, John F. (1997), "Matching Logical Structure to Linguistic Structure", ''Studies in the Logic of Charles Sanders Peirce'', Nathan Houser, Don D. Roberts, and James Van Evra, editors, Bloomington and Indianopolis: Indiana University Press, pp. 418–444, see 420, 425, 426, 428. and continued to develop the method until his death in 1914. The graphs Peirce proposed three systems of existential graphs: * ''alpha'', isomorphic to sentential logic and the two-element Boolean algebra; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charles Sanders Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism". Educated as a chemist and employed as a scientist for thirty years, Peirce made major contributions to logic, a subject that, for him, encompassed much of what is now called epistemology and the philosophy of science. He saw logic as the formal branch of semiotics, of which he is a founder, which foreshadowed the debate among logical positivists and proponents of philosophy of language that dominated 20th-century Western philosophy. Additionally, he defined the concept of abductive reasoning, as well as rigorously formulated mathematical induction and deductive reasoning. As early as 1886, he saw that logical operations could be carried out by electrical switching circuits. The same idea was used decades later to produce digital computers. See Also In 1934, the philosopher Paul We ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantifier (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing has the property P. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Begriffsschrift
''Begriffsschrift'' (German for, roughly, "concept-script") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book. ''Begriffsschrift'' is usually translated as ''concept writing'' or ''concept notation''; the full title of the book identifies it as "a formula language, modeled on that of arithmetic, for pure thought." Frege's motivation for developing his formal approach to logic resembled Leibniz's motivation for his '' calculus ratiocinator'' (despite that, in the foreword Frege clearly denies that he achieved this aim, and also that his main aim would be constructing an ideal language like Leibniz's, which Frege declares to be a quite hard and idealistic—though not impossible—task). Frege went on to employ his logical calculus in his research on the foundations of mathematics, carried out over the next quarter century. This is the first work in Analytical Philosophy, a field that future British and Anglo philosophers such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gottlob Frege
Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philosophy, concentrating on the philosophy of language, logic, and mathematics. Though he was largely ignored during his lifetime, Giuseppe Peano (1858–1932), Bertrand Russell (1872–1970), and, to some extent, Ludwig Wittgenstein (1889–1951) introduced his work to later generations of philosophers. Frege is widely considered to be the greatest logician since Aristotle, and one of the most profound philosophers of mathematics ever. His contributions include the development of modern logic in the '' Begriffsschrift'' and work in the foundations of mathematics. His book the ''Foundations of Arithmetic'' is the seminal text of the logicist project, and is cited by Michael Dummett as where to pinpoint the linguistic turn. His philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Term Logic
In philosophy, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge. Term logic revived in medieval times, first in Islamic logic by Alpharabius in the tenth century, and later in Christian Europe in the twelfth century with the advent of new logic, remaining dominant until the advent of predicate logic in the late nineteenth century. However, even if eclipsed by newer logical systems, term logic still plays a significant role in the study of logic. Rather than radically breaking with term logic, modern logics typically expand it, so to understand the newer systems, one must be acquainted with the earlier one. Aristotle's system Aristotle's logical work is collected in the six texts that are collectively known as th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]