Plural Quantification
In mathematics and mathematical logic, logic, plural quantification is the theory that an individual Variable (mathematics), variable x may take on ''plural'', as well as singular, values. As well as substituting individual objects such as Alice, the number 1, the tallest building in London etc. for x, we may substitute both Alice and Bob, or all the numbers between 0 and 10, or all the buildings in London over 20 stories. The point of the theory is to give First-order predicate calculus, first-order logic the power of set theory, but without any "existential commitment" to such objects as sets. The classic expositions are Boolos 1984 and Lewis 1991. History The view is commonly associated with George Boolos, though it is older (see notably Peter Simons (academic), Simons 1982), and is related to the view of classes defended by John Stuart Mill and other Nominalism, nominalist philosophers. Mill argued that universals or "classes" are not a peculiar kind of thing, having an ob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fred Landman
Fred (Alfred) Landman (; born October 28, 1956) is a Dutch-born Israeli professor of semantics. He teaches at Tel Aviv University has written a number of books about linguistics. Biography Fred Landman was born in Holland. He immigrated to Israel in 1993. He was married to London-born linguist Susan Rothstein until her death in 2019. The couple had one daughter and resided in Tel Aviv. Academic career Landman is known for his work on progressives, polarity phenomena, groups, and other topics in semantics and pragmatics. He taught at Brown University and Cornell University Cornell University is a Private university, private Ivy League research university based in Ithaca, New York, United States. The university was co-founded by American philanthropist Ezra Cornell and historian and educator Andrew Dickson W ... before moving to Israel. Published works * ''Indefinites and the Type of Sets'' (2004) * ''Events and Plurality: The Jerusalem Lectures'' (2000) * ''Structures ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites". In logic, many paradoxes exist that are known to be invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Foundations Of Mathematics
Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theorems, proof (mathematics), proofs, algorithms, etc. in particular. This may also include the philosophy of mathematics, philosophical study of the relation of this framework with reality. The term "foundations of mathematics" was not coined before the end of the 19th century, although foundations were first established by the ancient Greek philosophers under the name of Aristotle's logic and systematically applied in Euclid's Elements, Euclid's ''Elements''. A mathematical assertion is considered as truth (mathematics), truth only if it is a theorem that is proved from true premises by means of a sequence of syllogisms (inference rules), the premises being either already proved theorems or self-evident assertions called axioms or postulat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monadic Logic
In logic, the monadic predicate calculus (also called monadic first-order logic) is the fragment of first-order logic in which all relation symbols in the signature are monadic (that is, they take only one argument), and there are no function symbols. All atomic formulas are thus of the form P(x), where P is a relation symbol and x is a variable. Monadic predicate calculus can be contrasted with polyadic predicate calculus, which allows relation symbols that take two or more arguments. Expressiveness The absence of polyadic relation symbols severely restricts what can be expressed in the monadic predicate calculus. It is so weak that, unlike the full predicate calculus, it is decidable—there is a decision procedure that determines whether a given formula of monadic predicate calculus is logically valid (true for all nonempty domains). Löwenheim, L. (1915) "Über Möglichkeiten im Relativkalkül," ''Mathematische Annalen'' 76: 447-470. Translated as "On possibilities in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second-order Logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, quantifies over relations. For example, the second-order sentence \forall P\,\forall x (Px \lor \neg Px) says that for every formula ''P'', and every individual ''x'', either ''Px'' is true or not(''Px'') is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. Examples First-order logic can quantify over individuals, but no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonfirstorderizable
In formal logic, nonfirstorderizability is the inability of a natural-language statement to be adequately captured by a formula of first-order logic. Specifically, a statement is nonfirstorderizable if there is no formula of first-order logic which is true in a model if and only if the statement holds in that model. Nonfirstorderizable statements are sometimes presented as evidence that first-order logic is not adequate to capture the nuances of meaning in natural language. The term was coined by George Boolos in his paper "To Be is to Be a Value of a Variable (or to Be Some Values of Some Variables)". Reprinted in Quine argued that such sentences call for second-order symbolization, which can be interpreted as plural quantification over the same domain as first-order quantifiers use, without postulation of distinct "second-order objects" (properties, sets, etc.). Examples Geach-Kaplan sentence A standard example is the '' Geach– Kaplan sentence'': "Some critics admire o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Entity
In philosophy and the arts, a fundamental distinction exists between abstract and concrete entities. While there is no universally accepted definition, common examples illustrate the difference: numbers, sets, and ideas are typically classified as abstract objects, whereas plants, dogs, and planets are considered concrete objects. Philosophers have proposed several criteria to define this distinction: # ''Spatiotemporal existence'' – Abstract objects exist outside space-time, while concrete objects exist within space-time. # ''Causal influence'' – Concrete objects can cause and be affected by other entities (e.g., a rock breaking a window), whereas abstract objects (e.g., the number 2) lack causal powers and do not cause anything to happen in the physical world. # ''Metaphysical relation'' – In metaphysics, concrete objects are specific, individual things ( particulars), while abstract objects represent general concepts or categories ( universals). # ''Ontological domain' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Problem Of Universals
The problem of universals is an ancient question from metaphysics that has inspired a range of philosophical topics and disputes: "Should the properties an object has in common with other objects, such as color and shape, be considered to exist beyond those objects? And if a property exists separately from objects, what is the nature of that existence?" The problem of universals relates to various inquiries closely related to metaphysics, logic, and epistemology, as far back as Plato and Aristotle, in efforts to define the mental connections a human makes when they understand a property such as shape or color to be the same in nonidentical objects. Universals are qualities or relations found in two or more entities. As an example, if all cup holders are ''circular'' in some way, ''circularity'' may be considered a universal property of cup holders. Further, if two daughters can be considered ''female offspring of Frank'', the qualities of being ''female'', ''offspring'', and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Willard Van Orman Quine
Willard Van Orman Quine ( ; known to his friends as "Van"; June 25, 1908 – December 25, 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century". He was the Edgar Pierce Chair of Philosophy at Harvard University from 1956 to 1978. Quine was a teacher of logic and set theory. He was famous for his position that first-order logic is the only kind worthy of the name, and developed his own system of mathematics and set theory, known as New Foundations. In the philosophy of mathematics, he and his Harvard colleague Hilary Putnam developed the Quine–Putnam indispensability argument, an argument for the Philosophy of mathematics#Empiricism, reality of mathematical entities.Colyvan, Mark"Indispensability Arguments in the Philosophy of Mathematics" The Stanford Encyclopedia of Philosophy (Fall 2004 Edition), Edward N. Zalta (ed.). He was the main proponent of the view that philosophy is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arity
In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and philosophy, arity may also be called adicity and degree. In linguistics, it is usually named valency. Examples In general, functions or operators with a given arity follow the naming conventions of ''n''-based numeral systems, such as binary and hexadecimal. A Latin prefix is combined with the -ary suffix. For example: * A nullary function takes no arguments. ** Example: f()=2 * A unary function takes one argument. ** Example: f(x)=2x * A binary function takes two arguments. ** Example: f(x,y)=2xy * A ternary function takes three arguments. ** Example: f(x,y,z)=2xyz * An ''n''-ary function takes ''n'' arguments. ** Example: f(x_1, x_2, \ldots, x_n)=2\prod_^n x_i Nullary A constant can be treated as the output of an operation o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |