HOME
*





P-adic Teichmüller Theory
In mathematics, ''p''-adic Teichmüller theory describes the "uniformization" of ''p''-adic curves and their moduli, generalizing the usual Teichmüller theory that describes the uniformization of Riemann surfaces and their moduli. It was introduced and developed by . The first problem is to reformulate the Fuchsian uniformization of a complex Riemann surface (an isomorphism from the upper half plane to a universal covering space of the surface) in a way that makes sense for ''p''-adic curves. The existence of a Fuchsian uniformization is equivalent to the existence of a canonical indigenous bundle over the Riemann surface: the unique indigenous bundle that is invariant under complex conjugation and whose monodromy representation is quasi-Fuchsian. For ''p''-adic curves the analogue of complex conjugation is the Frobenius endomorphism, and the analogue of the quasi-Fuchsian condition is an integrality condition on the indigenous line bundle. So ''p''-adic Teichmüller theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Spaces
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme (mathematics), scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus (topology), genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here differ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Teichmüller Theory
Teichmüller is a German surname (German for ''pond miller'') and may refer to: * Anna Teichmüller (1861–1940), German composer * :de:Frank Teichmüller (19?? – now), former German IG Metall district manager "coast" * Gustav Teichmüller (1832–1888), German philosopher * :de:Marlies Teichmüller (1914–2000), German geologist * (Paul Julius) Oswald Teichmüller (1913–1943), German mathematician * Robert Teichmüller (1863–1939), pianist and professor * :de:Rolf Teichmüller (1904–1983), German geologist See also * Teichmüller space * Inter-universal Teichmüller theory Inter-universal Teichmüller theory (abbreviated as IUT or IUTT) is the name given by mathematician Shinichi Mochizuki to a theory he developed in the 2000s, following his earlier work in arithmetic geometry. According to Mochizuki, it is "an arith ... {{DEFAULTSORT:Teichmueller German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Uniformization Theorem
In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces. Since every Riemann surface has a universal cover which is a simply connected Riemann surface, the uniformization theorem leads to a classification of Riemann surfaces into three types: those that have the Riemann sphere as universal cover ("elliptic"), those with the plane as universal cover ("parabolic") and those with the unit disk as universal cover ("hyperbolic"). It further follows that every Riemann surface admits a Riemannian metric of constant curvature, where the curvature can be taken to be 1 in the elliptic, 0 in the parabolic and -1 in the hyperbolic case. The uniformization theorem also yields a simi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surfaces
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous definition of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indigenous Bundle
In mathematics, an indigenous bundle on a Riemann surface is a fiber bundle with a flat connection associated to some complex projective structure. Indigenous bundles were introduced by . Indigenous bundles for curves over p-adic fields were introduced by in his study of p-adic Teichmüller theory In mathematics, ''p''-adic Teichmüller theory describes the "uniformization" of ''p''-adic curves and their moduli, generalizing the usual Teichmüller theory that describes the uniformization of Riemann surfaces and their moduli. It was intr .... References * * Riemann surfaces {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monodromy
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of ''monodromy'' comes from "running round singly". It is closely associated with covering maps and their degeneration into ramification; the aspect giving rise to monodromy phenomena is that certain functions we may wish to define fail to be ''single-valued'' as we "run round" a path encircling a singularity. The failure of monodromy can be measured by defining a monodromy group: a group of transformations acting on the data that encodes what happens as we "run round" in one dimension. Lack of monodromy is sometimes called ''polydromy''. Definition Let be a connected and locally connected based topological space with base point , and let p: \tilde \to X be a covering with fiber F = p^(x). For a loop based at , denote a lift under the covering ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Endomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . Ther ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inter-universal Teichmüller Theory
Inter-universal Teichmüller theory (abbreviated as IUT or IUTT) is the name given by mathematician Shinichi Mochizuki to a theory he developed in the 2000s, following his earlier work in arithmetic geometry. According to Mochizuki, it is "an arithmetic version of Teichmüller theory for number fields equipped with an elliptic curve". The theory was made public in a series of four preprints posted in 2012 to his website. The most striking claimed application of the theory is to provide a proof for various outstanding conjectures in number theory, in particular the ''abc'' conjecture. Mochizuki and a few other mathematicians claim that the theory indeed yields such a proof but this has so far not been accepted by the mathematical community. History The theory was developed entirely by Mochizuki up to 2012, and the last parts were written up in a series of four preprints. Mochizuki made his work public in August 2012 with none of the fanfare that typically accompanies major advan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]