Ordinal Logic
   HOME
*





Ordinal Logic
In mathematics, ordinal logic is a logic associated with an ordinal number by recursively adding elements to a sequence of previous logics.Solomon Feferman, ''Turing in the Land of O(z)'' in "The universal Turing machine: a half-century survey" by Rolf Herken 1995 page 111''Concise Routledge encyclopedia of philosophy'' 2000 page 647 The concept was introduced in 1938 by Alan Turing in his PhD dissertation at Princeton in view of Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research i ....Alan Turing, ''Systems of Logic Based on Ordinals'' Proceedings London Mathematical Society Volumes 2–45, Issue 1, pp. 161–22/ref> While Gödel showed that every logic system suffers from some form of incompleteness, Turing focused on a method so that a complete system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alan Turing
Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. He is widely considered to be the father of theoretical computer science and artificial intelligence. Born in Maida Vale, London, Turing was raised in southern England. He graduated at King's College, Cambridge, with a degree in mathematics. Whilst he was a fellow at Cambridge, he published a proof demonstrating that some purely mathematical yes–no questions can never be answered by computation and defined a Turing machine, and went on to prove that the halting problem for Turing machines is undecidable. In 1938, he obtained his PhD from the Department of Mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Systems Of Logic Based On Ordinals
''Systems of Logic Based on Ordinals'' was the PhD dissertation of the mathematician Alan Turing. Turing's thesis is not about a new type of formal logic, nor was he interested in so-called ‘ranked logic’ systems derived from ordinal or relative numbering, in which comparisons can be made between truth-states on the basis of relative veracity. Instead, Turing investigated the possibility of resolving the Godelian incompleteness condition using Cantor's method of infinites. This condition can be stated thus—in all systems with finite sets of axioms, an exclusive-or condition applies to expressive power and provability; i.e. one can have power and no proof, or proof and no power, but not both. The thesis is an exploration of formal mathematical systems after Gödel's theorem. Gödel showed that for any formal system S powerful enough to represent arithmetic, there is a theorem G which is true but the system is unable to prove. G could be added as an additional axiom to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel's Incompleteness Theorems
Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of for ... that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistency, consistent system of axioms whose theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constructive Ordinal
In mathematics, specifically computability and set theory, an ordinal \alpha is said to be computable or recursive if there is a computable well-ordering of a subset of the natural numbers having the order type \alpha. It is easy to check that \omega is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by \omega^_1. The Church–Kleene ordinal is a limit ordinal. An ordinal is computable if and only if it is smaller than \omega^_1. Since there are only countably many computable relations, there are also only countably many computable ordinals. Thus, \omega^_1 is countable. The computable ordinals are exactly the ordinals that have an ordinal notation in Kleene's \mathcal. See also *Arithmetical hierarchy *Large countable ordinal *Ordinal analysis *Ordinal notation References * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Systems Of Formal Logic
A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences. Systems have several common properties and characteristics, including structure, function(s), behavior and interconnectivity. Etymology The term ''system'' comes from the Latin word ''systēma'', in turn from Greek ''systēma'': "whole concept made of several parts or members, system", literary "composition"."σύστημα"
Henry George Liddell, Robert Scott, ''