HOME



picture info

Octagonal
In geometry, an octagon () is an eight-sided polygon or 8-gon. A '' regular octagon'' has Schläfli symbol and can also be constructed as a quasiregular truncated square, t, which alternates two types of edges. A truncated octagon, t is a hexadecagon, . A 3D analog of the octagon can be the rhombicuboctahedron with the triangular faces on it like the replaced edges, if one considers the octagon to be a truncated square. Properties The sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°. If squares are constructed all internally or all externally on the sides of an octagon, then the midpoints of the segments connecting the centers of opposite squares form a quadrilateral that is both equidiagonal and orthodiagonal (that is, whose diagonals are equal in length and at right angles to each other).Dao Thanh Oai (2015), "Equilateral triangles and Kiepert perspectors in complex numbers", ''Forum Geometricorum'' 15, 105- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexadecagon
In mathematics, a hexadecagon (sometimes called a hexakaidecagon or 16-gon) is a sixteen-sided polygon. Regular hexadecagon A ''regular polygon, regular hexadecagon'' is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is and can be constructed as a Truncation (geometry), truncated octagon, t, and a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon, . Construction As 16 = 24 (a power of two), a regular hexadecagon is constructible polygon, constructible using compass and straightedge: this was already known to ancient Greek mathematicians. Measurements Each angle of a regular hexadecagon is 157.5 Degree (angle), degrees, and the total angle measure of any hexadecagon is 2520 degrees. The area of a regular hexadecagon with edge length ''t'' is :\begin A = 4t^2 \cot \frac =& 4t^2 \left(1+\sqrt+\sqrt\right)\\ =& 4t^2 (\sqrt+1)(\sqrt+1) .\end Because the hexadecagon has a number of sides that is a power of tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schläfli Symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean space, Euclidean geometry to more than three dimensions and discovered all their convex regular polytopes, including the six that occur in four dimensions. Definition The Schläfli symbol is a Recursive definition, recursive description, starting with \ for a p-sided regular polygon that is Convex set, convex. For example, is an equilateral triangle, is a Square (geometry), square, a convex regular pentagon, etc. Regular star polygons are not convex, and their Schläfli symbols \ contain irreducible fractions p/q, where p is the number of vertices, and q is their turning number. Equivalently, \ is created from the vertices of \, connected every q. For example, \ is a pentagram; \ is a pentagon. A regular pol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotational Symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape (geometry), shape has when it looks the same after some rotation (mathematics), rotation by a partial turn (angle), turn. An object's degree of rotational symmetry is the number of distinct Orientation (geometry), orientations in which it looks exactly the same for each rotation. Certain geometric objects are partially symmetrical when rotated at certain angles such as squares rotated 90°, however the only geometric objects that are fully rotationally symmetric at any angle are spheres, circles and other spheroids. Formal treatment Formally the rotational symmetry is symmetry with respect to some or all rotations in -dimensional Euclidean space. Rotations are Euclidean group#Direct and indirect isometries, direct isometries, i.e., Isometry, isometries preserving Orientation (mathematics), orientation. Therefore, a symmetry group of rotational symmetry is a subgroup of (see Euclidean g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexadecagon
In mathematics, a hexadecagon (sometimes called a hexakaidecagon or 16-gon) is a sixteen-sided polygon. Regular hexadecagon A ''regular polygon, regular hexadecagon'' is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is and can be constructed as a Truncation (geometry), truncated octagon, t, and a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon, . Construction As 16 = 24 (a power of two), a regular hexadecagon is constructible polygon, constructible using compass and straightedge: this was already known to ancient Greek mathematicians. Measurements Each angle of a regular hexadecagon is 157.5 Degree (angle), degrees, and the total angle measure of any hexadecagon is 2520 degrees. The area of a regular hexadecagon with edge length ''t'' is :\begin A = 4t^2 \cot \frac =& 4t^2 \left(1+\sqrt+\sqrt\right)\\ =& 4t^2 (\sqrt+1)(\sqrt+1) .\end Because the hexadecagon has a number of sides that is a power of tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Apothem
The apothem (sometimes abbreviated as apo) of a regular polygon is a line segment from the center to the midpoint of one of its sides. Equivalently, it is the line drawn from the center of the polygon that is perpendicular to one of its sides. The word "apothem" can also refer to the length of that line segment and comes from the ancient Greek ''ἀπόθεμα'' ("put away, put aside"), made of ''ἀπό'' ("off, away") and ''θέμα'' ("that which is laid down"), indicating a generic line written down. Regular polygons are the only polygons that have apothems. Because of this, all the apothems in a polygon will be congruent. Properties of apothems The apothem ''a'' can be used to find the area of any regular ''n''-sided polygon of side length ''s'' according to the following formula, which also states that the area is equal to the apothem multiplied by half the perimeter since ''ns'' = ''p''. :A = \frac = \frac. This formula can be derived by partitioning the ''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inscribed Figure
An inscribed triangle of a circle In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed fig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coefficients
In mathematics, a coefficient is a multiplicative factor involved in some term of a polynomial, a series, or any other type of expression. It may be a number without units, in which case it is known as a numerical factor. It may also be a constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any expression (including variables such as , and ). When the combination of variables and constants is not necessarily involved in a product, it may be called a ''parameter''. For example, the polynomial 2x^2-x+3 has coefficients 2, −1, and 3, and the powers of the variable x in the polynomial ax^2+bx+c have coefficient parameters a, b, and c. A , also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as because it is a one-dimensional unit -sphere. If is a point on the unit circle's circumference, then and are the lengths of the legs of a right triangle whose hypotenuse has length 1. Thus, by the Pythagorean theorem, and satisfy the equation x^2 + y^2 = 1. Since for all , and since the reflection of any point on the unit circle about the - or -axis is also on the unit circle, the above equation holds for all points on the unit circle, not only those in the first quadrant. The interior of the unit circle is called the open unit disk, while the interior of the unit circle combined with the unit circle itself is called the closed unit disk. One may also use other notions of "dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Silver Ratio
In mathematics, the silver ratio is a geometrical aspect ratio, proportion with exact value the positive polynomial root, solution of the equation The name ''silver ratio'' results from analogy with the golden ratio, the positive solution of the equation Although its name is recent, the silver ratio (or silver mean) has been studied since ancient times because of its connections to the square root of 2, almost-isosceles Pythagorean triple#Special cases and related equations, Pythagorean triples, square triangular numbers, Pell numbers, the octagon, and six polyhedron, polyhedra with octahedral symmetry. Definition If the ratio of two quantities is proportionate to the sum of two and their reciprocal ratio, they are in the silver ratio: \frac =\frac The ratio \frac is here denoted Substituting a=\sigma b \, in the second fraction, \sigma =\frac. It follows that the silver ratio is the positive solution of quadratic equation \sigma^2 -2\sigma -1 =0. The quadratic for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Right Triangles
A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of Natural number, whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometry, geometric problems without resorting to more advanced methods. Angle-based ''Angle-based'' special right triangles are specified by the relationships of the angles of which the triangle is composed. The angles of these triangles are such that the larger (right) angle, which is 90 degree (angle), degrees or radians, is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Angle
A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). The central angle is also known as the arc's angular distance. The arc length spanned by a central angle on a sphere is called '' spherical distance''. The size of a central angle is or (radians). When defining or drawing a central angle, in addition to specifying the points and , one must specify whether the angle being defined is the convex angle (<180°) or the reflex angle (>180°). Equivalently, one must specify whether the movement from point to point is clockwise or counterclockwise. Formulas If the intersection points and of the legs of the angle with the circle form a diameter, then is a straight angle. (In radians, .) Let be the min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]