Numerical Monoid
   HOME
*





Numerical Monoid
In mathematics, a numerical semigroup is a special kind of a semigroup. Its underlying Set (mathematics), set is the set of all nonnegative integers except a finite set, finite number and the binary operation is the operation of addition of integers. Also, the integer 0 (number), 0 must be an element of the semigroup. For example, while the set is a numerical semigroup, the set is not because 1 is in the set and 1 + 1 = 2 is not in the set. Numerical semigroups are commutative monoids and are also known as numerical monoids. The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form ''x''1''n''1 + ''x''2 ''n''2 + ... + ''x''''r'' ''n''''r'' for a given set of positive integers and for arbitrary nonnegative integers ''x''1, ''x''2, ..., ''x''''r''. This problem had been considered by several mathematicians like Ferdinand Georg Frobenius, Frobenius (1849–1917) and James Joseph Sylvester, Sylves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Well Temperament
Well temperament (also good temperament, circular or circulating temperament) is a type of tempered tuning described in 20th-century music theory. The term is modeled on the German word ''wohltemperiert''. This word also appears in the title of J. S. Bach's famous composition "Das wohltemperierte Klavier", ''The Well-Tempered Clavier''. Origins As used in the 17th century, the term "well tempered" meant that the twelve notes per octave of the standard keyboard were tuned in such a way that it was possible to play music in all major or minor keys that were commonly in use, without sounding perceptibly out of tune. One of the first attestations of the concept of "well tempered" is found in a treatise in German by the music theorist Andreas Werckmeister. In the subtitle of his ''Orgelprobe'', from 1681, he writes: The words and were subsequently combined into . A modern definition of "well temperament", from Herbert Kelletat, is given below: : In most tuning systems used be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup Theory
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sylver Coinage
Sylver coinage is a mathematical game for two players, invented by John H. Conway. It is discussed in chapter 18 of '' Winning Ways for Your Mathematical Plays''. This article summarizes that chapter. The two players take turns naming positive integers greater than 1 that are not the sum of nonnegative multiples of previously named integers. The player who cannot name such a number loses. For instance, if player A opens with 2, B can win by naming 3. Sylver coinage is named after James Joseph Sylvester, who proved that if ''a'' and ''b'' are relatively prime positive integers, then (''a'' − 1)(''b''  − 1) − 1 is the largest number that is not a sum of nonnegative multiples of ''a'' and ''b''. Thus, if ''a'' and ''b'' are the first two moves in a game of sylver coinage, this formula gives the largest number that can still be played. More generally, if the greatest common divisor of the moves played so far is ''g'', then only finitely many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Classes Of Semigroups
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematica Scandinavica
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ..., plotting Function (mathematics), functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other programming languages. It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign, Illinois. The Wolfram Language is the programming language used in ''Mathematica''. Mathematica 1.0 was released on June 23, 1988 in Champaign, Illinois and Santa Clara, California. __TOC__ Notebook in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE