Sylver Coinage
Sylver coinage is a mathematical game for two players, invented by John H. Conway. It is discussed in chapter 18 of '' Winning Ways for Your Mathematical Plays''. This article summarizes that chapter. The two players take turns naming positive integers greater than 1 that are not the sum of nonnegative multiples of previously named integers. The player who cannot name such a number loses. For instance, if player A opens with 2, B can win by naming 3. Sylver coinage is named after James Joseph Sylvester, who proved that if ''a'' and ''b'' are relatively prime positive integers, then (''a'' − 1)(''b'' − 1) − 1 is the largest number that is not a sum of nonnegative multiples of ''a'' and ''b''. Thus, if ''a'' and ''b'' are the first two moves in a game of sylver coinage, this formula gives the largest number that can still be played. More generally, if the greatest common divisor of the moves played so far is ''g'', then only finitely man ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Game
A mathematical game is a game whose rules, strategies, and outcomes are defined by clear mathematical parameters. Often, such games have simple rules and match procedures, such as Tic-tac-toe and Dots and Boxes. Generally, mathematical games need not be conceptually intricate to involve deeper computational underpinnings. For example, even though the rules of Mancala are relatively basic, the game can be rigorously analyzed through the lens of combinatorial game theory. Mathematical games differ sharply from mathematical puzzles in that mathematical puzzles require specific mathematical expertise to complete, whereas mathematical games do not require a deep knowledge of mathematics to play. Often, the arithmetic core of mathematical games is not readily apparent to players untrained to note the statistical or mathematical aspects. Some mathematical games are of deep interest in the field of recreational mathematics. When studying a game's core mathematics, arithmetic theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smooth Number
In number theory, an ''n''-smooth (or ''n''-friable) number is an integer whose prime factors are all less than or equal to ''n''. For example, a 7-smooth number is a number whose every prime factor is at most 7, so 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman. Smooth numbers are especially important in cryptography, which relies on factorization of integers. The 2-smooth numbers are just the powers of 2, while 5-smooth numbers are known as regular numbers. Definition A positive integer is called B-smooth if none of its prime factors are greater than B. For example, 1,620 has prime factorization 22 × 34 × 5; therefore 1,620 is 5-smooth because none of its prime factors are greater than 5. This definition includes numbers that lack some of the smaller prime factors; for example, both 10 and 12 are 5-smooth, even though they miss out the prime factors 3 and 5, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Games
A mathematical game is a game whose rules, strategies, and outcomes are defined by clear mathematical parameters. Often, such games have simple rules and match procedures, such as Tic-tac-toe and Dots and Boxes. Generally, mathematical games need not be conceptually intricate to involve deeper computational underpinnings. For example, even though the rules of Mancala are relatively basic, the game can be rigorously analyzed through the lens of combinatorial game theory. Mathematical games differ sharply from mathematical puzzles in that mathematical puzzles require specific mathematical expertise to complete, whereas mathematical games do not require a deep knowledge of mathematics to play. Often, the arithmetic core of mathematical games is not readily apparent to players untrained to note the statistical or mathematical aspects. Some mathematical games are of deep interest in the field of recreational mathematics. When studying a game's core mathematics, arithmetic theory i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022� ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
On-Line Encyclopedia Of Integer Sequences
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009. Sloane is chairman of the OEIS Foundation. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 350,000 sequences, making it the largest database of its kind. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. History Neil Sloane started collecting integer sequences as a graduate student in 1965 to support his work in combinatorics. The database was at first stored on punche ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thrackle
A thrackle is an embedding of a graph in the plane, such that each edge is a Jordan arc and every pair of edges meet exactly once. Edges may either meet at a common endpoint, or, if they have no endpoints in common, at a point in their interiors. In the latter case, the crossing must be '' transverse''.. A preliminary version of these results was reviewed in . Linear thrackles A linear thrackle is a thrackle drawn in such a way that its edges are straight line segments. As Paul Erdős observed, every linear thrackle has at most as many edges as vertices. If a vertex ''v'' is connected to three or more edges ''vw'', ''vx'', and ''vy'', at least one of those edges (say ''vw'') lies on a line that separates two other edges. Then, ''w'' must have degree one, because no line segment ending at ''w'', other than ''vw'', can touch both ''vx'' and ''vy''. Removing ''w'' and ''vw'' produces a smaller thrackle, without changing the difference between the numbers of edges and vertices. Aft ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Danzer Set
In geometry, a Danzer set is a set of points that touches every convex body of unit volume. Ludwig Danzer asked whether it is possible for such a set to have bounded density. Several variations of this problem remain unsolved. Density One way to define the problem more formally is to consider the growth rate of a set S in Euclidean space, defined as the function that maps a real number r to the number of points of S that are within distance r of the origin. Danzer's question is whether it is possible for a Danzer set to have growth expressed in big O notation. If so, this would equal the growth rate of well-spaced point sets like the integer lattice (which is not a Danzer set). It is possible to construct a Danzer set of growth rate that is within a polylogarithmic factor For instance, overlaying rectangular grids whose cells have constant volume but differing aspect ratios can achieve a growth rate Constructions for Danzer sets are known with a somewhat slower growth rate, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conway's 99-graph Problem
In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution. Properties If such a graph exists, it would necessarily be a locally linear graph and a strongly regular graph with parameters (99,14,1,2). The first, third, and fourth parameters encode the statement of the problem: the graph should have 99 vertices, every pair of adjacent vertices should have 1 common neighbor, and every pair of non-adjacent vertices should have 2 common neighbors. The second parameter means that the graph is a regular graph with 14 edges per vertex. If this graph exists, it cannot hav ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dickson's Lemma
In mathematics, Dickson's lemma states that every set of n-tuples of natural numbers has finitely many minimal elements. This simple fact from combinatorics has become attributed to the American algebraist L. E. Dickson, who used it to prove a result in number theory about perfect numbers. However, the lemma was certainly known earlier, for example to Paul Gordan in his research on invariant theory.. Example Let K be a fixed number, and let S = \ be the set of pairs of numbers whose product is at least K. When defined over the positive real numbers, S has infinitely many minimal elements of the form (x,K/x), one for each positive number x; this set of points forms one of the branches of a hyperbola. The pairs on this hyperbola are minimal, because it is not possible for a different pair that belongs to S to be less than or equal to (x,K/x) in both of its coordinates. However, Dickson's lemma concerns only tuples of natural numbers, and over the natural numbers there are only fin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strategy-stealing Argument
In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage. A key property of a strategy stealing argument is that it proves that the first player can win (or possibly draw) the game without actually constructing such a strategy. So, although it might tell you that there exists a winning strategy, the proof gives you no information about what that strategy is. The argument works by obtaining a contradiction. A winning strategy is assumed to exist for the second player, who is using it. But then, roughly speaking, after making an arbitrary first move – which by the conditions above is not a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |