Nondeterministic Constraint Logic
   HOME



picture info

Nondeterministic Constraint Logic
In theoretical computer science, nondeterministic constraint logic is a combinatorial system in which an orientation is given to the edges of a weighted undirected graph, subject to certain constraints. One can change this orientation by steps in which a single edge is reversed, subject to the same constraints. This is a form of reversible logic in that each sequence of edge orientation changes can be undone. Reconfiguration problems for constraint logic, asking for a sequence of moves to connect certain states, connect all states, or reverse a specified edge have been proven to be PSPACE-complete. These hardness results form the basis for proofs that various games and puzzles are PSPACE-hard or PSPACE-complete. Constraint graphs In the simplest version of nondeterministic constraint logic, each edge of an undirected graph has weight either one or two. (The weights may also be represented graphically by drawing edges of weight one as red and edges of weight two as blue.) The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Computer Science
Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with A Mathematical Theory of Communication, a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks and para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gadget (computer Science)
In computational complexity theory, a gadget is a subunit of a problem instance that simulates the behavior of one of the fundamental units of a different computational problem. Gadgets are typically used to construct reductions from one computational problem to another, as part of proofs of NP-completeness or other types of computational hardness. The component design technique is a method for constructing reductions by using gadgets. traces the use of gadgets to a 1954 paper in graph theory by W. T. Tutte, in which Tutte provided gadgets for reducing the problem of finding a subgraph with given degree constraints to a perfect matching problem. However, the "gadget" terminology has a later origin, and does not appear in Tutte's paper. Example Many NP-completeness proofs are based on many-one reductions from 3-satisfiability, the problem of finding a satisfying assignment to a Boolean formula that is a conjunction (Boolean ''AND'') of clauses, each clause being the disjunctio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sliding Puzzle
A sliding puzzle, sliding block puzzle, or sliding tile puzzle is a combination puzzle that challenges a player to slide (frequently flat) pieces along certain routes (usually on a board) to establish a certain end-configuration. The pieces to be moved may consist of simple shapes, or they may be imprinted with colours, patterns, sections of a larger picture (like a jigsaw puzzle), numbers, or letters. Sliding puzzles are essentially two-dimensional in nature, even if the sliding is facilitated by mechanically interlinked pieces (like partially encaged marbles) or three-dimensional tokens. In manufactured wood and plastic products, the linking and encaging is often achieved in combination, through Mortise and tenon, mortise-and-tenon key channels along the edges of the pieces. In at least one vintage case of the popular :zh-tw:華容道 (遊戲), Chinese cognate game Huarong Road, a wire screen prevents lifting of the pieces, which remain loose. As the illustration shows, some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




3-CNF
In Boolean algebra, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. In automated theorem proving, the notion "''clausal normal form''" is often used in a narrower sense, meaning a particular representation of a CNF formula as a set of sets of literals. Definition A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions of one or more literals. As in disjunctive normal form (DNF), the only propositional operators in CNF are or (\vee), and (\and), and not (\neg). The ''not'' operator can only be used as part of a literal, which means that it can only precede a propositional variable. The following is a context-free grammar for CNF: : ''CNF'' \, \to \, ''Disjunct'' \, \mid \, ''Disjunct'' \, \land \, ''CNF'' : ''Disjunct'' \, \to \, ''Literal'' \, \mid\, ''Literal'' \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dominating Set
In graph theory, a dominating set for a Graph (discrete mathematics), graph is a subset of its vertices, such that any vertex of is in , or has a neighbor in . The domination number is the number of vertices in a smallest dominating set for . The dominating set problem concerns testing whether for a given graph and input ; it is a classical NP-complete decision problem in computational complexity theory. Therefore it is believed that there may be no polynomial-time algorithm, efficient algorithm that can compute for all graphs . However, there are efficient approximation algorithms, as well as efficient exact algorithms for certain graph classes. Dominating sets are of practical interest in several areas. In wireless networking, dominating sets are used to find efficient routes within ad-hoc mobile networks. They have also been used in document summarization, and in designing secure systems for Electrical grid, electrical grids. Formal definition Given an undirected g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Cover
In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations. It is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory. The minimum vertex cover problem can be formulated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reconfiguration
In discrete mathematics and theoretical computer science, reconfiguration problems are computational problems involving reachability or Connectivity (graph theory), connectivity of state spaces. Types of problems Here, a state space is a discrete set of configurations of a system or solutions of a combinatorial problem, called states, together with a set of allowed moves linking one state to another. Reconfiguration problems may ask: *For a given class of problems, is the state space always connected? That is, can one transform every pair of states into each other with a sequence of moves? If not, what is the computational complexity of determining whether the state space for a particular problem is connected? *What is the diameter of the state space, the smallest number such that every two states can be transformed into each other with at most moves? *Given two states, what is the complexity of determining whether they can be transformed into each other, or of finding the shortes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sokoban
is a puzzle video game in which the player pushes boxes around in a warehouse, trying to get them to storage locations. The game was designed in 1981 by Hiroyuki Imabayashi and first published in Japan in 1982 by his company Thinking Rabbit for the NEC PC-8801 computer. It was later ported to various platforms and followed by new titles. It became popular in Japan and internationally, inspiring unofficial versions, a subgenre of box-pushing puzzle games, and artificial intelligence research. Gameplay The warehouse is a grid composed of floor squares and impassable wall squares. Some floor squares contain a box and some are marked as storage locations. The number of boxes equals the number of storage locations. The player, often represented as a worker character, can move one square at a time horizontally or vertically onto empty floor squares, but cannot pass through walls or boxes. To move a box, the player walks up to it and pushes it to an empty square directly beyond the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rush Hour (board Game)
''Rush Hour'' is a sliding block puzzle invented by Nob Yoshigahara in the 1970s. It was first sold in the United States in 1996. It is now being manufactured by ThinkFun (formerly Binary Arts). ThinkFun now sells ''Rush Hour'' spin-offs ''Rush Hour Jr.'', ''Safari Rush Hour'', ''Railroad Rush Hour'', ''Rush Hour Brain Fitness'' and ''Rush Hour Shift'', with puzzles by Scott Kim. The game sold more than 1 million units. Game The board is a 6×6 grid with grooves in the tiles to allow cars to slide, card tray to hold the cards, current active card holder and an exit hole. The game comes with 16 vehicles (12 cars, 4 trucks), each colored differently, and 40 puzzle cards. Cars and trucks are both one square wide, but cars are two squares long and trucks are three squares long. Vehicles can only be moved along a straight line on the grid; rotation is forbidden. Puzzle cards, each with a level number that indicates the difficulty of the challenge, show the starting positions of cars ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sliding Block Puzzle
A sliding puzzle, sliding block puzzle, or sliding tile puzzle is a combination puzzle that challenges a player to slide (frequently flat) pieces along certain routes (usually on a board) to establish a certain end-configuration. The pieces to be moved may consist of simple shapes, or they may be imprinted with colours, patterns, sections of a larger picture (like a jigsaw puzzle), numbers, or letters. Sliding puzzles are essentially two-dimensional in nature, even if the sliding is facilitated by mechanically interlinked pieces (like partially encaged marbles) or three-dimensional tokens. In manufactured wood and plastic products, the linking and encaging is often achieved in combination, through mortise-and-tenon key channels along the edges of the pieces. In at least one vintage case of the popular Chinese cognate game Huarong Road, a wire screen prevents lifting of the pieces, which remain loose. As the illustration shows, some sliding puzzles are mechanical puzzles. How ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Erik Demaine
Erik D. Demaine (born February 28, 1981) is a Canadian-American professor of computer science at the Massachusetts Institute of Technology and a former child prodigy. Early life and education Demaine was born in Halifax, Nova Scotia, to mathematician and sculptor Martin L. Demaine and Judy Anderson. From the age of 7, he was identified as a child prodigy and spent time traveling across North America with his father. He was home-schooled during that time span until entering university at the age of 12. Demaine completed his bachelor's degree at 14 years of age at Dalhousie University in Canada, and completed his PhD at the University of Waterloo by the time he was 20 years old. Demaine's PhD dissertation, a work in the field of computational origami, was completed at the University of Waterloo under the supervision of Anna Lubiw and Ian Munro. This work was awarded the Canadian Governor General's Gold Medal from the University of Waterloo and the NSERC Doctoral Prize (200 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]