Non-expanding Horizon
   HOME
*





Non-expanding Horizon
A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed. Definition of NEHs A three-dimensional submanifold ∆ is defined as a ''generic'' (rotating and distorted) NEH if it respects the following conditions:Abhay Ashtekar, Christopher Beetle, Olaf Dreyer, et al. "Generic isolated horizons and their applications". ''Physical Review Letters'', 2000, 85(17): 3564-3567arXiv:gr-qc/0006006v2/ref>Abhay Ashtekar, Christopher Beetle, Jerzy Lewandowski. "Geometry of generic isolated horizons". ''Classical and Quantum Gravity'', 2002, 19(6): 1195-1225arXiv:gr-qc/0111067v2/ref>Abhay Ashtekar, Stephen Fairhurst, Badri Krishnan. "Isolated ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Hypersurface
In relativity and in pseudo-Riemannian geometry, a null hypersurface is a hypersurface whose normal vector at every point is a null vector (has zero length with respect to the local metric tensor). A light cone is an example. An alternative characterization is that the tangent space at every point of a hypersurface contains a nonzero vector such that the metric applied to such a vector and any vector in the tangent space is zero. Another way of saying this is that the pullback of the metric onto the tangent space is degenerate. For a Lorentzian metric, all the vectors in such a tangent space are space-like except in one direction, in which they are null. Physically, there is exactly one lightlike worldline contained in a null hypersurface through each point that corresponds to the worldline of a particle moving at the speed of light, and no contained worldlines that are time-like. Examples of null hypersurfaces include a light cone, a Killing horizon, and the event horizon of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface. Terminology The word ''flux'' comes from Latin: ''fluxus'' means "flow", and ''fluere'' is "to flow". As ''fluxion'', this term was introduced into differential calculus by Isaac Newton. The concept of heat flux was a key contribution of Joseph Fourier, in the analysis of heat transfer phenomena. His seminal treatise ''Théorie analytique de la chaleur'' (''The Analytical Theory of Heat''), defines ''fluxion'' as a central quantity and proceeds to derive the now well-known express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electromagnetic Tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below. Definition The electromagnetic tensor, conventionally labelled ''F'', is defined as the exterior derivative of the electromagnetic four-potential, ''A'', a differential 1-form: :F \ \stackrel\ \mathrmA. Therefore, ''F'' is a differential 2-form—that is, an antisymmetric rank-2 tensor field—on Minkowski space. In component form, :F_ = \partial_\mu A_\nu - \partial_\nu A_\mu. where \partial is the four-gradient and A is the four ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antisymmetric Tensor
In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. section §7. The index subset must generally either be all ''covariant'' or all ''contravariant''. For example, T_ = -T_ = T_ = -T_ = T_ = -T_ holds when the tensor is antisymmetric with respect to its first three indices. If a tensor changes sign under exchange of ''each'' pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor field of order k may be referred to as a differential k-form, and a completely antisymmetric contravariant tensor field may be referred to as a k-vector field. Antisymmetric and symmetric tensors A tensor A that is antisymmetric on indices i and j has the property that the contraction with a tensor B that is symmetric on indices i and j is identically 0. For a general tensor U with components U_ and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electrovacuum Solution
In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) ''source-free'' Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) ''Einstein–Maxwell solutions''. Definition In general relativity, the geometric setting for physical phenomena is a Lorentzian manifold, which is interpreted as a curved spacetime, and which is specified by defining a metric tensor g_ (or by defining a frame field). The Riemann curvature tensor R_ of this manifold and associated quantities such as the Einstein tensor G^, are well-defined. In general relativity, they can be interpreted as geometric manifestations (curvature and forces) of the gravitational field. We also need to specify an electromagnetic field by defining an electr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum Solution (general Relativity)
In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term (and thus, the lambdavacuums can be taken as cosmological models). More generally, a vacuum region in a Lorentzian manifold is a region in which the Einstein tensor vanishes. Vacuum solutions are a special case of the more general exact solutions in general relativity. Equivalent conditions It is a mathematical fact that the Einstein tensor vanishes if and only if the Ricci tensor vanishes. This follows from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Raychaudhuri Equation
In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter. The equation is important as a fundamental lemma for the Penrose–Hawking singularity theorems and for the study of exact solutions in general relativity, but has independent interest, since it offers a simple and general validation of our intuitive expectation that gravitation should be a universal attractive force between any two bits of mass-energy in general relativity, as it is in Newton's theory of gravitation. The equation was discovered independently by the Indian physicist Amal Kumar Raychaudhuri and the Soviet physicist Lev Landau.''The large scale structure of space-time'' by Stephen W. Hawking and G. F. R. Ellis, Cambridge University Press, 1973, p. 84, . Mathematical statement Given a timelike unit vector field \vec (which can be interpreted as a family or congruence of nonintersecting world lines via the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity ( stress–energy tensor, cur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence (general Relativity)
In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere vanishing) vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation. Types of congruences Congruences generated by nowhere vanishing timelike, null, or spacelike vector fields are called ''timelike'', ''null'', or ''spacelike'' respectively. A congruence is called a ''geodesic congruence'' if it admits a tangent vector field \vec with vanishing covariant derivative, \nabla_ \vec = 0. Relation with vector fields The integral curves of the vector field are a family of ''non-intersecting'' parameterized curves which fill up the spacetime. The congruence consists of the curves themselves, without reference to a particular parameterization. Many distinct vector fields can give rise to the ''same'' congruen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weyl Tensor
In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not convey information on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force. The Ricci curvature, or trace component of the Riemann tensor contains precisely the information about how volumes change in the presence of tidal forces, so the Weyl tensor is the traceless component of the Riemann tensor. This tensor has the same symmetries as the Riemann tensor, but satisfies the extra condition that it is trace-free: metric contraction on any pair of indices yields zero. It is obtained from the Riemann tensor by subtracting a tensor that is a linear express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Petrov Classification
In differential geometry and theoretical physics, the Petrov classification (also known as Petrov–Pirani–Penrose classification) describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold. It is most often applied in studying exact solutions of Einstein's field equations, but strictly speaking the classification is a theorem in pure mathematics applying to any Lorentzian manifold, independent of any physical interpretation. The classification was found in 1954 by A. Z. Petrov and independently by Felix Pirani in 1957. Classification theorem We can think of a fourth rank tensor such as the Weyl tensor, ''evaluated at some event'', as acting on the space of bivectors at that event like a linear operator acting on a vector space: : X^ \rightarrow \frac \, _ X^ Then, it is natural to consider the problem of finding eigenvalues \lambda and eigenvectors (which are now referred to as eigenbivectors) X^ such that :\frac \, _ \, X^ = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Wave
Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as waves similar to electromagnetic waves but the gravitational equivalent. Gravitational waves were later predicted in 1916 by Albert Einstein on the basis of his general theory of relativity as ripples in spacetime. Later he refused to accept gravitational waves. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed)showing one of the ways the methods of Newtonian physics are unable to explain ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]