HOME
*





Non-Archimedean Geometry
In mathematics, non-Archimedean geometry is any of a number of forms of geometry in which the axiom of Archimedes is negated. An example of such a geometry is the Dehn plane. Non-Archimedean geometries may, as the example indicates, have properties significantly different from Euclidean geometry. There are two senses in which the term may be used, referring to geometries over fields which violate one of the two senses of the Archimedean property (i.e. with respect to order or magnitude). Geometry over a non-Archimedean ordered field The first sense of the term is the geometry over a non-Archimedean ordered field, or a subset thereof. The aforementioned Dehn plane takes the self-product of the finite portion of a certain non-Archimedean ordered field based on the field of rational functions. In this geometry, there are significant differences from Euclidean geometry; in particular, there are infinitely many parallels to a straight line through a point—so the parallel postulate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robin Hartshorne
__NOTOC__ Robin Cope Hartshorne ( ; born March 15, 1938) is an American mathematician who is known for his work in algebraic geometry. Career Hartshorne was a Putnam Fellow in Fall 1958 while he was an undergraduate at Harvard University (under the name Robert C. Hartshorne). He received a Ph.D. in mathematics from Princeton University in 1963 after completing a doctoral dissertation titled ''Connectedness of the Hilbert scheme'' under the supervision of John Coleman Moore and Oscar Zariski. He then became a Junior Fellow at Harvard University, where he taught for several years. In 1972, he was appointed to the faculty at the University of California, Berkeley, where he is a Professor Emeritus as of 2020. Hartshorne is the author of the text ''Algebraic Geometry''. Awards In 1979, Hartshorne was awarded the Leroy P. Steele Prize for "his expository research article Equivalence relations on algebraic cycles and subvarieties of small codimension, Proceedings of Symposia in Pure Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Archimedes
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers ''x'' and ''y'', there is an integer ''n'' such that ''nx'' > ''y''. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''compa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dehn Plane
In geometry, Max Dehn introduced two examples of planes, a semi-Euclidean geometry and a non-Legendrian geometry, that have infinitely many lines parallel to a given one that pass through a given point, but where the sum of the angles of a triangle is at least . A similar phenomenon occurs in hyperbolic geometry, except that the sum of the angles of a triangle is less than . Dehn's examples use a non-Archimedean field, so that the Archimedean axiom is violated. They were introduced by and discussed by . Dehn's non-archimedean field Ω(''t'') To construct his geometries, Dehn used a non-Archimedean ordered Pythagorean field Ω(''t''), a Pythagorean closure of the field of rational functions R(''t''), consisting of the smallest field of real-valued functions on the real line containing the real constants, the identity function ''t'' (taking any real number to itself) and closed under the operation \omega \mapsto \sqrt . The field Ω(''t'') is ordered by putting ''x'' >&nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory, explained in geometrical language. For more than two thousand years, the adjective " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (algebra)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archimedean Property
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers ''x'' and ''y'', there is an integer ''n'' such that ''nx'' > ''y''. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''comparabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Non-Archimedean Ordered Field
In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational functions with real coefficients with a suitable order. Definition The Archimedean property is a property of certain ordered fields such as the rational numbers or the real numbers, stating that every two elements are within an integer multiple of each other. If a field contains two positive elements for which this is not true, then must be an infinitesimal, greater than zero but smaller than any integer unit fraction. Therefore, the negation of the Archimedean property is equivalent to the existence of infinitesimals. Applications Hyperreal fields, non-Archimedean ordered fields containing the real numbers as a subfield, may be used to provide a mathematical foundation for nonstandard analysis. Max Dehn used the Dehn field, an example of a non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallel Postulate
In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segment intersects two straight lines forming two interior angles on the same side that are less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.'' This postulate does not specifically talk about parallel lines; it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 just before the five postulates. ''Euclidean geometry'' is the study of geometry that satisfies all of Euclid's axioms, ''including'' the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive. Eventually, it was discovered that inverting the postulate gave valid, albeit differ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Value (algebra)
In algebra, an absolute value (also called a valuation, magnitude, or norm, although "norm (mathematics), norm" usually refers to a specific kind of absolute value on a Field (mathematics), field) is a Function (mathematics), function which measures the "size" of elements in a field or integral domain. More precisely, if ''D'' is an integral domain, then an absolute value is any mapping , x, from ''D'' to the real numbers R satisfying: It follows from these axioms that , 1,  = 1 and , -1,  = 1. Furthermore, for every positive integer ''n'', :, ''n'',  = , 1 + 1 + ... + 1 (''n'' times),  = , −1 − 1 − ... − 1 (''n'' times),  ≤ ''n''. The classical "absolute value" is one in which, for example, , 2, =2, but many other functions fulfill the requirements stated above, for instance the square root of the classical absolute value (but not the square thereof). An ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]