Multiple-prism Dispersion Theory
   HOME
*



picture info

Multiple-prism Dispersion Theory
The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book ''Opticks''. Prism pair expanders were introduced by Brewster in 1813. A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959.M. Born and E. Wolf, ''Principles of Optics'', 7th Ed. (Cambridge University, Cambridge, 1999). The generalized multiple-prism dispersion theory was introduced by Duarte and PiperF. J. Duarte and J. A. Piper, "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers", ''Opt. Commun.'' 43, 303–307 (1982).F. J. Duarte and J. A. Piper, "Generalized prism dispersion theory", ''Am. J. Phys.'' 51, 1132–1134 (1982). in 1982. Generalized multiple-prism dispersion equations The generalized mathematical description of multiple-prism dispersion, as a function of the angle of incidence, prism geometry, prism refractive index, and number of prisms, was introduced as a design tool for multiple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the greatest mathematicians and physicists and among the most influential scientists of all time. He was a key figure in the philosophical revolution known as the Enlightenment. His book (''Mathematical Principles of Natural Philosophy''), first published in 1687, established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for developing infinitesimal calculus. In the , Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. Newton used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dual Prism Expander And Grating Reflector For A Dye Laser
Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical number), a grammatical category used in some languages * Dual county, a Gaelic games county which in both Gaelic football and hurling * Dual diagnosis, a psychiatric diagnosis of co-occurrence of substance abuse and a mental problem * Dual fertilization, simultaneous application of a P-type and N-type fertilizer * Dual impedance, electrical circuits that are the dual of each other * Dual SIM cellphone supporting use of two SIMs * Aerochute International Dual a two-seat Australian powered parachute design Acronyms and other uses * Dual (brand), a manufacturer of Hifi equipment * DUAL (cognitive architecture), an artificial intelligence design model * DUAL algorithm, or diffusing update algorithm, used to update Internet protocol routing ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonlinear Optics
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds. History The first nonlinear optical effect to be predicted was two-photon absorption, by Maria Goeppert Mayer for her PhD in 1931, but it remained an unexplored theoretical curiosity until 1961 and the almost simultaneous observation of two-photon absorption at Bell Labs and the discovery of second-harmonic generation by Peter Franken ''et al.'' at University of Michigan, both shortly after the constru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiple-prism Grating Laser Oscillator
Multiple-prism grating laser oscillators, F. J. Duarte, Narrow-linewidth pulsed dye laser oscillators, in ''Dye Laser Principles'' (Academic, New York, 1990) Chapter 4. or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, diode lasers, and more recently fiber lasers. Excitation Multiple-prism grating laser oscillators can be excited either electrically, as in the case of gas lasers and semiconductor lasers,
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laser Linewidth
Laser linewidth is the spectral linewidth of a laser beam. Two of the most distinctive characteristics of laser emission are spatial coherence and spectral coherence. While spatial coherence is related to the beam divergence of the laser, spectral coherence is evaluated by measuring the linewidth of laser radiation. Theory History: First derivation of the laser linewidth The first human-made coherent light source was a maser. The acronym MASER stands for "Microwave Amplification by Stimulated Emission of Radiation". More precisely, it was the ammonia maser operating at 12.5 mm wavelength that was demonstrated by Gordon, Zeiger, and Townes in 1954. One year later the same authors derived theoretically the linewidth of their device by making the reasonable approximations that their ammonia maser Notably, their derivation was entirely semi-classical, describing the ammonia molecules as quantum emitters and assuming classical electromagnetic fields (but no quantized field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beam Expander
Beam expanders are optical devices that take a collimated beam of light and expand its size (or, used in reverse, reduce its size). In laser physics they are used either as intracavity or extracavity elements. They can be telescopic in nature or prismatic. Generally prismatic beam expanders use several prisms and are known as multiple-prism beam expanders. Telescopic beam expanders include refracting and reflective telescopes. A refracting telescope commonly used is the Galilean telescope which can function as a simple beam expander for collimated light. The main advantage of the Galilean design is that it never focuses a collimated beam to a point, so effects associated with high power density such as dielectric breakdown are more avoidable than with focusing designs such as the Keplerian telescope. When used as intracavity beam expanders, in laser resonators, these telescopes provide two-dimensional beam expansion in the 20–50 range. In tunable laser resonators intracav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Femtosecond Pulse
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier. They are characterized by a high peak intensity (or more correctly, irradiance) that usually leads to nonlinear interactions in various materials, including air. These processes are studied in the field of nonlinear optics. In the specialized literature, "ultrashort" refers to the femtosecond (fs) and picosecond (ps) range, although such pulses no longer hold the record for the shortest pulses artificially generated. Indeed, x-ray pulses with durations on the attosecond time scale have been reported. The 1999 Nobel Prize in Chemistry was awarded to Ah ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tunable Laser
A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range. There are many types and categories of tunable lasers. They exist in the gas, liquid, and solid state. Among the types of tunable lasers are excimer lasers, gas lasers (such as CO2 and He-Ne lasers), dye lasers (liquid and solid state), transition metal solid-state lasers, semiconductor crystal and diode lasers, and free electron lasers. Tunable lasers find applications in spectroscopy, photochemistry, atomic vapor laser isotope separation, and optical communications. Types of tunability Single line tuning Since no real laser is truly monochromatic, all lasers can emit light over some range of frequencies, known as the linewidth of the laser transition. In most lasers, this linewidth is quite narrow (for example, the  nm wave ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy. Optical microscopy and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beams interacting with the specimen, and the collection of the scattered radiation or another signal in order to create an image. This process may be carried out by wide-field irradiation of the sample (for example standard light microscopy and transmission electron microscopy) or by scanning a fine beam over the sample (for example confocal laser scanning microscopy and scanning electron microscopy). Scanning probe microscopy involves the interaction of a scanning probe with the surface of the objec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amici Prism
An Amici prism, named for the astronomer Giovanni Battista Amici, is a type of compound dispersive prism used in spectrometers. The Amici prism consists of two triangular prisms in contact, with the first typically being made from a medium-dispersion crown glass, and the second a higher-dispersion flint glass. Light entering the first prism is refracted at the first air-glass interface, refracted again at the interface between the two prisms, and then exits the second prism at near-normal incidence. The prism angles and materials are chosen such that one wavelength (colour) of light, the ''centre wavelength'', exits the prism parallel to (but offset from) the entrance beam. The prism assembly is thus a ''direct-vision prism'', and is commonly used as such in hand-held spectroscopes. Other wavelengths are deflected at angles depending on the glass dispersion of the materials. Looking at a light source through the prism thus shows the optical spectrum of the source. By 1860, Am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prism Compressor
A prism compressor is an optical device used to shorten the duration of a positively chirped ultrashort laser pulse by giving different wavelength components a different time delay. It typically consists of two prisms and a mirror. Figure 1 shows the construction of such a compressor. Although the dispersion of the prism material causes different wavelength components to travel along different paths, the compressor is built such that all wavelength components leave the compressor at different times, but in the same direction. If the different wavelength components of a laser pulse were already separated in time, the prism compressor can make them overlap with each other, thus causing a shorter pulse. Prism compressors are typically used to compensate for dispersion inside Ti:sapphire modelocked lasers. Each time the laser pulse inside travels through the optical components inside the laser cavity, it becomes stretched. A prism compressor inside the cavity can be designed such t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-slit Interferometric Equation
Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to -slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The -slit interferometer was first applied in the generation and measurement of complex interference patterns. In this article the generalized -slit interferometric equation, derived via Dirac's notation, is described. Although originally derived to reproduce and predict -slit interferograms, this equation also has applications to other areas of optics. Probability amplitudes and the '-slit interferometric equation In this approach the probability amplitude for the propagation of a photon from a source to an interference plane , via an array o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]