Multicomplex Numbers
   HOME
*





Multicomplex Numbers
In mathematics, the multicomplex number systems \Complex_n are defined inductively as follows: Let C0 be the real number system. For every let ''i''''n'' be a square root of −1, that is, an imaginary unit. Then \Complex_ = \lbrace z = x + y i_ : x,y \in \Complex_n \rbrace. In the multicomplex number systems one also requires that i_n i_m = i_m i_n (commutativity). Then \Complex_1 is the complex number system, \Complex_2 is the bicomplex number system, \Complex_3 is the tricomplex number system of Corrado Segre, and \Complex_n is the multicomplex number system of order ''n''. Each \Complex_n forms a Banach algebra. G. Bayley Price has written about the function theory of multicomplex systems, providing details for the bicomplex system \Complex_n . The multicomplex number systems are not to be confused with ''Clifford numbers'' (elements of a Clifford algebra), since Clifford's square roots of −1 anti-commute (i_n i_m + i_m i_n = 0 when for Clifford). Because the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of in a complex number is 2+3i. Imaginary numbers are an important mathematical concept; they extend the real number system \mathbb to the complex number system \mathbb, in which at least one root for every nonconstant polynomial exists (see Algebraic closure and Fundamental theorem of algebra). Here, the term "imaginary" is used because there is no real number having a negative square. There are two complex square roots of −1: and -i, just as there are two complex square roots of every real number other than zero (which has one double square root). In contexts in which use of the letter is ambiguous or problematic, the letter or the Greek \iota is sometimes used instead. For example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutativity
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bicomplex Number
In abstract algebra, a bicomplex number is a pair of complex numbers constructed by the Cayley–Dickson process that defines the bicomplex conjugate (w,z)^* = (w, -z), and the product of two bicomplex numbers as :(u,v)(w,z) = (u w - v z, u z + v w). Then the bicomplex norm is given by :(w,z)^* (w,z) = (w, -z)(w,z) = (w^2 + z^2, 0), a quadratic form in the first component. The bicomplex numbers form a commutative algebra over C of dimension two, which is isomorphic to the direct sum of algebras . The product of two bicomplex numbers yields a quadratic form value that is the product of the individual quadratic forms of the numbers: a verification of this property of the quadratic form of a product refers to the Brahmagupta–Fibonacci identity. This property of the quadratic form of a bicomplex number indicates that these numbers form a composition algebra. In fact, bicomplex numbers arise at the binarion level of the Cayley–Dickson construction based on \mathbb with no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Corrado Segre
Corrado Segre (20 August 1863 – 18 May 1924) was an Italian mathematician who is remembered today as a major contributor to the early development of algebraic geometry. Early life Corrado's parents were Abramo Segre and Estella De Benedetti. Career Segre developed his entire career at the University of Turin, first as a student of Enrico D'Ovidio. In 1883 he published a dissertation on quadrics in projective space and was named as assistant to professors in algebra and analytic geometry. In 1885 he also assisted in descriptive geometry. He began to instruct in projective geometry, as stand-in for Giuseppe Bruno, from 1885 to 1888. Then for 36 years he had the chair in higher geometry following D'Ovidio. Segre and Giuseppe Peano made Turin known in geometry, and their complementary instruction has been noted as follows: The Erlangen program of Felix Klein appealed early on to Segre, and he became a promulgator. First, in 1885 he published an article on conics in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach Algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy \, x \, y\, \ \leq \, x\, \, \, y\, \quad \text x, y \in A. This ensures that the multiplication operation is continuous. A Banach algebra is called ''unital'' if it has an identity element for the multiplication whose norm is 1, and ''commutative'' if its multiplication is commutative. Any Banach algebra A (whether it has an identity element or not) can be embedded isometrically into a unital Banach algebra A_e so as to form a closed ideal of A_e. Often one assumes ''a priori'' that the algebra under consideration is unital: for one can develop much of the theory by considering A_e and then applying the outcome in the ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Griffith Baley Price
G. Baley Price (14 March 1905, Brookhaven, Mississippi – 7 November 2006, Lawrence, Kansas) was an American mathematician and historian of American mathematics. He was a president of the Mathematical Association of America. Career After graduating with an A.B. from Mississippi College in 1925, G. B. Price went to Harvard University, where he received his M.A. in 1928 and his Ph.D. in 1932 under G. D. Birkhoff with thesis ''Double Pendulum and Similar Dynamical Systems''. Apart from a period of service with the U.S. Army Air Force in England in World War II, Price was a mathematics professor at the University of Kansas from 1937 to 1975 and chair of the mathematics department from 1951 to 1970. He was the co-author of two textbooks (published in 1966 and 1968) and the author of a history of the department of mathematics of the University of Kansas and several articles related to the role of mathematics and mathematicians in World War II. He was president of the Mathematical Assoc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clifford Algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford. The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''.see for ex. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by a vector space over a field , where is equipped with a qua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element  that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor is called left regular or left cancellable. Similarly, an element of a ring that is not a right zero divisor is called right regular or right cancellable. An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Split-complex Number
In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number with its conjugate is N(z) := zz^* = x^2 - y^2, an isotropic quadratic form. The collection of all split complex numbers z=x+yj for forms an algebra over the field of real numbers. Two split-complex numbers and have a product that satisfies N(wz)=N(w)N(z). This composition of over the algebra product makes a composition algebra. A similar algebra based on and component-wise operations of addition and multiplication, where is the quadratic form on also forms a quadratic space. The ring isomorphism \begin D &\to \mathbb^2 \\ x + yj &\mapsto (x - y, x + y) \end relates proportional quadratic forms, but the mapping is an isometry since the multiplicative identity of is at a distance from 0, which is normalized in . S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]