Multi-swarm Optimization
   HOME
*





Multi-swarm Optimization
Multi-swarm optimization is a variant of particle swarm optimization (PSO) based on the use of multiple sub-swarms instead of one (standard) swarm. The general approach in multi-swarm optimization is that each sub-swarm focuses on a specific region while a specific diversification method decides where and when to launch the sub-swarms. The multi-swarm framework is especially fitted for the optimization on multi-modal problems, where multiple (local) optima exist. Description In multi-modal problems it is important to achieve an effective balance between exploration and exploitation. Multi-swarm systems provide a new approach to improve this balance. Instead of trying to achieve a compromise between exploration and exploitation which could weaken both mechanisms of the search process, multi-swarm systems separate them into distinct phases. Each phase is more focused on either exploitation (individual sub-swarms) or exploration (diversification method). The coordination of the sub-sw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hybrid Algorithm
{{Unreferenced, date=May 2014 A hybrid algorithm is an algorithm that combines two or more other algorithms that solve the same problem, and is mostly used in programming languages like C++, either choosing one (depending on the data), or switching between them over the course of the algorithm. This is generally done to combine desired features of each, so that the overall algorithm is better than the individual components. "Hybrid algorithm" does not refer to simply combining multiple algorithms to solve a different problem – many algorithms can be considered as combinations of simpler pieces – but only to combining algorithms that solve the same problem, but differ in other characteristics, notably performance. Examples In computer science, hybrid algorithms are very common in optimized real-world implementations of recursive algorithms, particularly implementations of divide-and-conquer or decrease-and-conquer algorithms, where the size of the data decreases as one moves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Estimation Of Distribution Algorithm
''Estimation of distribution algorithms'' (EDAs), sometimes called ''probabilistic model-building genetic algorithms'' (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima. EDAs belong to the class of evolutionary algorithms. The main difference between EDAs and most conventional evolutionary algorithms is that evolutionary algorithms generate new candidate solutions using an ''implicit'' distribution defined by one or more variation operators, whereas EDAs use an ''explicit'' probability distribution encoded by a Bayesian network, a multivariate normal distribution, or another model class. Similarly as other evolutionary algorithms, EDAs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Evolution
In evolutionary computation, differential evolution (DE) is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an optimal solution is ever found. DE is used for multidimensional real-valued functions but does not use the gradient of the problem being optimized, which means DE does not require the optimization problem to be differentiable, as is required by classic optimization methods such as gradient descent and quasi-newton methods. DE can therefore also be used on optimization problems that are not even continuous, are noisy, change over time, etc. DE optimizes a problem by maintaining a population of candidate solutions and creating new candidate solutions by combining ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mendeley
Mendeley is a reference manager software developed by Elsevier. It is used to manage and share research papers and generate bibliographies for scholarly articles. History The company Mendeley, named after the biologist Gregor Mendel and chemist Dmitri Mendeleev, was founded in London in November 2007 by three German PhD students. The first public beta version of the software was released in August 2008. The company's investors included some people previously involved with Last.fm, Skype, and Warner Music Group, as well as academicians from Cambridge and Johns Hopkins University. In 2009, Mendeley won several awards including Plugg.eu "European Start-up of the Year 2009", TechCrunch Europas "Best Social Innovation Which Benefits Society 2009", and The Guardian ranked it #6 in "Top 100 tech media companies". In 2012, Mendeley was one of the repositories for green Open Access recommended by Peter Suber. The recommendation was revoked after Elsevier bought Mendeley. Mendeley was pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Swarm Intelligence
Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems. SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment.Hu, J.; Turgut, A.; Krajnik, T.; Lennox, B.; Arvin, F.,Occlusion-Based Coordination Protocol Design for Autonomous Robotic Shepherding Tasks IEEE Transactions on Cognitive and Developmental Systems, 2020. The inspiration often comes from nature, especially biological systems. The agents follow very simple rules, and although there is no centralized control structure dictating how individual agents should behave, local, and to a certain degree random, interactions between such agents lead to the emergence of "intelligent" global behavior, unknown to the individual a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]