Morphism Of Schemes
   HOME
*





Morphism Of Schemes
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. Definition By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties). Let ƒ:''X''→''Y'' be a morphism of schemes. If ''x'' is a point of ''X'', since ƒ is continuous, there are open affine subsets ''U'' = Spec ''A'' of ''X'' containing ''x'' and ''V'' = Spec ''B'' of ''Y'' such that ƒ(''U'') ⊆ ''V''. Then ƒ: ''U'' → ''V'' is a morphism of affine schemes and thus is induced by some ring homomorphism ''B'' → ''A'' (cf. #Affine case.) In fact, one can use this description to "define" a morphism of schemes; o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism Of Algebraic Varieties
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective variety, projective varieties – the weaker condition of a rational map and birational maps are frequently used as well. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine varieties), then a regular map f\colon X\to Y is the restriction of a polynomial map \mathbb^n\to \mathbb^m. Explicitly, it has the form: :f = (f_1, \dots, f_m) where the f_is are in the coordinate ring of ''X'': :k[X] = k[x_1, \dots, x_n]/I, where ''I'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Morphism
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field ''k'' a complete variety. For example, every projective variety over a field ''k'' is proper over ''k''. A scheme ''X'' of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space ''X''(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism ''f'': ''X'' → ''Y'' of schemes is called universally closed if for every scheme ''Z'' with a morphism ''Z'' → ''Y'', the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ( GAII, 5.4.. One also says that ''X'' is proper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with pullbacks; fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that the general language for describing these coverings is that of a Grothendieck topology. Thus a stack ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-functor
In mathematics, a pseudofunctor ''F'' is a mapping between 2-categories, or from a category to a 2-category, that is just like a functor except that F(f \circ g) = F(f) \circ F(g) and F(1) = 1 do not hold as exact equalities but only up to ''coherent isomorphisms''. The Grothendieck construction associates to a pseudofunctor a fibered category. See also *Lax functor *Prestack (an example of pseudofunctor) *Fibered category Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which ''inverse images'' (or ''pull-backs'') of ... References *C. SorgerLectures on moduli of principal G-bundles over algebraic curves External links *http://ncatlab.org/nlab/show/pseudofunctor Functors {{categorytheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functor Of Points
In algebraic geometry, a functor represented by a scheme ''X'' is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme ''S'' is (up to natural bijections) the set of all morphisms S \to X. The scheme ''X'' is then said to ''represent'' the functor and that ''classify'' geometric objects over ''S'' given by ''F''. The best known example is the Hilbert scheme of a scheme ''X'' (over some fixed base scheme), which, when it exists, represents a functor sending a scheme ''S'' to a flat family of closed subschemes of X \times S. In some applications, it may not be possible to find a scheme that represents a given functor. This led to the notion of a stack, which is not quite a functor but can still be treated as if it were a geometric space. (A Hilbert scheme is a scheme, but not a stack because, very roughly speaking, deformation theory is simpler for closed schemes.) Some moduli problems are solved by giving formal solutions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Point
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proj Construction
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Proj of a graded ring Proj as a set Let S be a graded ring, whereS = \bigoplus_ S_iis the direct sum decomposition associated with the gradation. The irrelevant ideal of S is the ideal of elements of positive degreeS_+ = \bigoplus_ S_i .We say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set,\operatorname S = \. For brevity we will sometimes write X for \operatorname S. Proj as a topological space We may define a topology, called the Zariski topology, on \operatorname S by defining the closed sets to be those of the form :V(a) = \, where a is a homogeneous ideal of S. As in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presheaf (category Theory)
In category theory, a branch of mathematics, a presheaf on a category C is a functor F\colon C^\mathrm\to\mathbf. If C is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space. A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on C into a category, and is an example of a functor category. It is often written as \widehat = \mathbf^. A functor into \widehat is sometimes called a profunctor. A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–, ''A'') for some object ''A'' of C is called a representable presheaf. Some authors refer to a functor F\colon C^\mathrm\to\mathbf as a \mathbf-valued presheaf. Examples * A simplicial set is a Set-valued presheaf on the simplex category C=\Delta. Properties * When C is a small category, the functor category \widehat=\mathbf^ is cartesian closed. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Branched Covering
In mathematics, a branched covering is a map that is almost a covering map, except on a small set. In topology In topology, a map is a ''branched covering'' if it is a covering map everywhere except for a nowhere dense set known as the branch set. Examples include the map from a wedge of circles to a single circle, where the map is a homeomorphism on each circle. In algebraic geometry In algebraic geometry, the term branched covering is used to describe morphisms f from an algebraic variety V to another one W, the two dimensions being the same, and the typical fibre of f being of dimension 0. In that case, there will be an open set W' of W (for the Zariski topology) that is dense in W, such that the restriction of f to W' (from V' = f^(W') to W', that is) is unramified. Depending on the context, we can take this as local homeomorphism for the strong topology, over the complex numbers, or as an étale morphism in general (under some slightly stronger hypotheses, on flatness and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unramified Morphism
In algebraic geometry, an unramified morphism is a morphism f: X \to Y of schemes such that (a) it is locally of finite presentation and (b) for each x \in X and y = f(x), we have that # The residue field k(x) is a separable algebraic extension of k(y). # f^(\mathfrak_y) \mathcal_ = \mathfrak_x, where f^: \mathcal_ \to \mathcal_ and \mathfrak_y, \mathfrak_x are maximal ideals of the local rings. A flat unramified morphism is called an étale morphism. Less strongly, if f satisfies the conditions when restricted to sufficiently small neighborhoods of x and y, then f is said to be unramified near x. Some authors prefer to use weaker conditions, in which case they call a morphism satisfying the above a G-unramified morphism. Simple example Let A be a ring and ''B'' the ring obtained by adjoining an integral element to ''A''; i.e., B = A (F) for some monic polynomial ''F''. Then \operatorname(B) \to \operatorname(A) is unramified if and only if the polynomial ''F'' is separable (i.e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]