Monotonic Logic
   HOME
*





Monotonic Logic
Monotonicity of entailment is a property of many logical systems that states that the hypotheses of any derived fact may be freely extended with additional assumptions. In sequent calculi this property can be captured by an inference rule called weakening, or sometimes thinning, and in such systems one may say that entailment is monotone if and only if the rule is admissible. Logical systems with this property are occasionally called ''monotonic logics'' in order to differentiate them from non-monotonic logics. Weakening rule To illustrate, consider the natural deduction sequent: Γ \vdash C That is, on the basis of a list of assumptions Γ, one can prove C. Weakening, by adding an assumption A, allows one to conclude: Γ, A \vdash C For example, the syllogism "All men are mortal. Socrates is a man. Therefore Socrates is mortal." can be weakened by adding a premise: "All men are mortal. Socrates is a man. Cows produce milk. Therefore Socrates is mortal." The validity of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical System
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Background Each formal system is described by primitive symbols (which collectively form an alphabet) to finitely construct a formal language from a set of axioms through inferential rules of formation. The system thus consists of valid formulas built up through finite combinations of the primitive symbols—combinations that are formed from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-monotonic Logic
A non-monotonic logic is a formal logic whose conclusion relation is not monotonic. In other words, non-monotonic logics are devised to capture and represent defeasible inferences (cf. defeasible reasoning), i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. Most studied formal logics have a monotonic entailment relation, meaning that adding a formula to a theory never produces a pruning of its set of conclusions. Intuitively, monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what is known. A monotonic logic cannot handle various reasoning tasks such as reasoning by default (conclusions may be derived only because of lack of evidence of the contrary), abductive reasoning (conclusions are only deduced as most likely explanations), some important approaches to reasoning about knowledge (the ignorance of a conclusion must be retracted when the concl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Deduction
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. Motivation Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise ''Principia Mathematica''. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to diffe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or "consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ''A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metatheorem
In logic, a metatheorem is a statement about a formal system proven in a metalanguage. Unlike theorems proved within a given formal system, a metatheorem is proved within a metatheory, and may reference concepts that are present in the metatheory but not the object theory. A formal system is determined by a formal language and a deductive system (axioms and rules of inference). The formal system can be used to prove particular sentences of the formal language with that system. Metatheorems, however, are proved externally to the system in question, in its metatheory. Common metatheories used in logic are set theory (especially in model theory) and primitive recursive arithmetic (especially in proof theory). Rather than demonstrating particular sentences to be provable, metatheorems may show that each of a broad class of sentences can be proved, or show that certain sentences cannot be proved. Examples Examples of metatheorems include: * The deduction theorem for first-order logic s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strict Logic
In mathematical writing, the term strict refers to the property of excluding equality and equivalence and often occurs in the context of inequality and monotonic functions. It is often attached to a technical term to indicate that the exclusive meaning of the term is to be understood. The opposite is non-strict, which is often understood to be the case but can be put explicitly for clarity. In some contexts, the word "proper" can also be used as a mathematical synonym for "strict". Use This term is commonly used in the context of inequalities — the phrase "strictly less than" means "less than and not equal to" (likewise "strictly greater than" means "greater than and not equal to"). More generally, a strict partial order, strict total order, and strict weak order exclude equality and equivalence. When comparing numbers to zero, the phrases "strictly positive" and "strictly negative" mean "positive and not equal to zero" and "negative and not equal to zero", respectively. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relevant Logic
Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called ''relevant logic'' by British and, especially, Australian logicians, and ''relevance logic'' by American logicians. Relevance logic aims to capture aspects of implication that are ignored by the " material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication. This idea is not new: C. I. Lewis was led to invent modal logic, and specifically strict implication, on the grounds that classical logic grants paradoxes of material implication such as the principle that a falsehood implies any proposition. Hence "if I'm a donkey, then two and two is four" is true when translated as a material implication, yet it seems intuitive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Logic
Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction. Linear logic lends itself to many different presentations, explanations, and intuitions. Proof-theoretically, it derives from an analysis of classical sequent calculus in which uses of (the structural rules) contraction and weakening are carefully controlled. Operationally, this means that logical deduction is no longer merely about an ever-expanding collection of persistent "truths", ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idempotency Of Entailment
Idempotency of entailment is a property of logical systems that states that one may derive the same consequences from many instances of a hypothesis as from just one. This property can be captured by a structural rule called contraction, and in such systems one may say that entailment is idempotent if and only if contraction is an admissible rule In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is .... Rule of contraction: from :''A'',''C'',''C'' → ''B'' is derived :''A'',''C'' → ''B''. Or in sequent calculus notation, :\frac In linear and affine logic, entailment is not idempotent. See also * No-deleting theorem Logical consequence Theorems in propositional logic {{logic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exchange Rule
In proof theory, a structural rule is an inference rule that does not refer to any logical connective, but instead operates on the judgment or sequents directly. Structural rules often mimic intended meta-theoretic properties of the logic. Logics that deny one or more of the structural rules are classified as substructural logics. Common structural rules Three common structural rules are: * Weakening, where the hypotheses or conclusion of a sequent may be extended with additional members. In symbolic form weakening rules can be written as \frac on the left of the turnstile, and \frac on the right. * Contraction, where two equal (or unifiable) members on the same side of a sequent may be replaced by a single member (or common instance). Symbolically: \frac and \frac. Also known as factoring in automated theorem proving systems using resolution. Known as idempotency of entailment in classical logic. * Exchange, where two members on the same side of a sequent may be swapped ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]