Monad Transformer
   HOME





Monad Transformer
In functional programming, a monad transformer is a type constructor which takes a monad as an argument and returns a monad as a result. Monad transformers can be used to compose features encapsulated by monads – such as state, exception handling, and I/O – in a modular way. Typically, a monad transformer is created by generalising an existing monad; applying the resulting monad transformer to the identity monad yields a monad which is equivalent to the original monad (ignoring any necessary boxing and unboxing). Definition A monad transformer consists of: # A type constructor t of kind (* -> *) -> * -> * # Monad operations return and bind (or an equivalent formulation) for all t m where m is a monad, satisfying the monad laws # An additional operation, lift :: m a -> t m a, satisfying the following laws: (the notation `bind` below indicates infix application): ## lift . return = return ## lift (m `bind` k) = (lift m) `bind` (lift . k) Examples The option monad transformer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Programming
In computer science, functional programming is a programming paradigm where programs are constructed by Function application, applying and Function composition (computer science), composing Function (computer science), functions. It is a declarative programming paradigm in which function definitions are Tree (data structure), trees of Expression (computer science), expressions that map Value (computer science), values to other values, rather than a sequence of Imperative programming, imperative Statement (computer science), statements which update the State (computer science), running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local Identifier (computer languages), identifiers), passed as Parameter (computer programming), arguments, and Return value, returned from other functions, just as any other data type can. This allows programs to be written in a Declarative programming, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monads In Functional Programming
In functional programming, monads are a way to structure computations as a sequence of steps, where each step not only produces a value but also some extra information about the computation, such as a potential failure, non-determinism, or side effect. More formally, a monad is a type constructor M equipped with two operations, which lifts a value into the monadic context, and which chains monadic computations. In simpler terms, monads can be thought of as interfaces implemented on type constructors, that allow for functions to abstract over various type constructor variants that implement monad (e.g. , , etc.). Both the concept of a monad and the term originally come from category theory, where a monad is defined as an endofunctor with additional structure. Research beginning in the late 1980s and early 1990s established that monads could bring seemingly disparate computer-science problems under a unified, functional model. Category theory also provides a few formal requiremen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exception Handling
In computing and computer programming, exception handling is the process of responding to the occurrence of ''exceptions'' – anomalous or exceptional conditions requiring special processing – during the execution of a program. In general, an exception breaks the normal flow of execution and executes a pre-registered ''exception handler''; the details of how this is done depend on whether it is a hardware or software exception and how the software exception is implemented. Exceptions are defined by different layers of a computer system, and the typical layers are CPU-defined interrupts, operating system (OS)-defined signals, programming language-defined exceptions. Each layer requires different ways of exception handling although they may be interrelated, e.g. a CPU interrupt could be turned into an OS signal. Some exceptions, especially hardware ones, may be handled so gracefully that execution can resume where it was interrupted. Definition The definition of an excep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kind (type Theory)
In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator ( type constructor). A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted * and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier. Syntactically, it is natural to consider polymorphic data types to be type constructors, thus non-polymorphic types to be nullary type constructors. But all nullary constructors, thus all monomorphic types, have the same, simplest kind; namely *. Since higher-order type operators are uncommon in programming languages, in most programming practice, kinds are used to distinguish between data types and the types of constructors which are used to implement pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monad (functional Programming)
In functional programming, monads are a way to structure computations as a sequence of steps, where each step not only produces a value but also some extra information about the computation, such as a potential failure, non-determinism, or side effect. More formally, a monad is a type constructor M equipped with two operations, which lifts a value into the monadic context, and which chains monadic computations. In simpler terms, monads can be thought of as interfaces implemented on type constructors, that allow for functions to abstract over various type constructor variants that implement monad (e.g. , , etc.). Both the concept of a monad and the term originally come from category theory, where a monad is defined as an endofunctor with additional structure. Research beginning in the late 1980s and early 1990s established that monads could bring seemingly disparate computer-science problems under a unified, functional model. Category theory also provides a few formal requirem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Option Type
Option or Options may refer to: Computing * Option key, a key on Apple computer keyboards * Option type, a polymorphic data type in programming languages * Command-line option, an optional parameter to a command *OPTIONS, an HTTP request method Literature * ''Options'' (novel), a novel by Robert Sheckley * ''Option'' (car magazine), a Japanese car magazine * ''Option'' (music magazine), a defunct American music magazine *"Options", a 1979 story by John Varley Legal rights *Option (aircraft purchasing) * South Tyrol Option Agreement, a forced resettling contract between fascist Italy and Nazi Germany regarding the German-speaking inhabitants of South Tyrol * Option (filmmaking), a contractual agreement between a film producer and a writer, in which the producer obtains the right to buy a screenplay from the writer before a certain date. *Option (finance), an instrument that conveys the right, but not the obligation, to engage in a future transaction (for example, on some u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata theory (Krohn–Rhodes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division (mathematics), division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication (mathematics), multiplication and addition of numbers, are commutative was for many centuries implicitly assumed. Thus, this property was not named until the 19th century, when new algebraic structures started to be studied. Definition A binary operation * on a Set (mathematics), set ''S'' is ''commutative'' if x * y = y * x for all x,y \in S. An operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monads In Functional Programming
In functional programming, monads are a way to structure computations as a sequence of steps, where each step not only produces a value but also some extra information about the computation, such as a potential failure, non-determinism, or side effect. More formally, a monad is a type constructor M equipped with two operations, which lifts a value into the monadic context, and which chains monadic computations. In simpler terms, monads can be thought of as interfaces implemented on type constructors, that allow for functions to abstract over various type constructor variants that implement monad (e.g. , , etc.). Both the concept of a monad and the term originally come from category theory, where a monad is defined as an endofunctor with additional structure. Research beginning in the late 1980s and early 1990s established that monads could bring seemingly disparate computer-science problems under a unified, functional model. Category theory also provides a few formal requiremen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]