Mipmap
   HOME
*



picture info

Mipmap
In computer graphics, mipmaps (also MIP maps) or pyramids are pre-calculated, optimized sequences of images, each of which is a progressively lower resolution representation of the previous. The height and width of each image, or level, in the mipmap is a factor of two smaller than the previous level. Mipmaps do not have to be square. They are intended to increase rendering speed and reduce aliasing artifacts. A high-resolution mipmap image is used for high-density samples, such as for objects close to the camera; lower-resolution images are used as the object appears farther away. This is a more efficient way of downfiltering ( minifying) a texture than sampling all texels in the original texture that would contribute to a screen pixel; it is faster to take a constant number of samples from the appropriately downfiltered textures. Mipmaps are widely used in 3D computer games, flight simulators, other 3D imaging systems for texture filtering, and 2D and 3D GIS software. Their us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MipMap Example STS101
In computer graphics, mipmaps (also MIP maps) or pyramids are pre-calculated, optimized sequences of images, each of which is a progressively lower resolution representation of the previous. The height and width of each image, or level, in the mipmap is a factor of two smaller than the previous level. Mipmaps do not have to be square. They are intended to increase rendering speed and reduce aliasing artifacts. A high-resolution mipmap image is used for high-density samples, such as for objects close to the camera; lower-resolution images are used as the object appears farther away. This is a more efficient way of downfiltering ( minifying) a texture than sampling all texels in the original texture that would contribute to a screen pixel; it is faster to take a constant number of samples from the appropriately downfiltered textures. Mipmaps are widely used in 3D computer games, flight simulators, other 3D imaging systems for texture filtering, and 2D and 3D GIS software. Their use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mipmap Aliasing Comparison
In computer graphics, mipmaps (also MIP maps) or pyramids are pre-calculated, optimized sequences of images, each of which is a progressively lower resolution representation of the previous. The height and width of each image, or level, in the mipmap is a factor of two smaller than the previous level. Mipmaps do not have to be square. They are intended to increase rendering speed and reduce aliasing artifacts. A high-resolution mipmap image is used for high-density samples, such as for objects close to the camera; lower-resolution images are used as the object appears farther away. This is a more efficient way of downfiltering ( minifying) a texture than sampling all texels in the original texture that would contribute to a screen pixel; it is faster to take a constant number of samples from the appropriately downfiltered textures. Mipmaps are widely used in 3D computer games, flight simulators, other 3D imaging systems for texture filtering, and 2D and 3D GIS software. Their use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Texture Filtering
In computer graphics, texture filtering or texture smoothing is the method used to determine the texture color for a texture mapped pixel, using the colors of nearby texels (pixels of the texture). There are two main categories of texture filtering, magnification filtering and minification filtering. Depending on the situation texture filtering is either a type of reconstruction filter where sparse data is interpolated to fill gaps (magnification), or a type of anti-aliasing (AA), where texture samples exist at a higher frequency than required for the sample frequency needed for texture fill (minification). Put simply, filtering describes how a texture is applied at many different shapes, size, angles and scales. Depending on the chosen filter algorithm the result will show varying degrees of blurriness, detail, spatial aliasing, temporal aliasing and blocking. Depending on the circumstances filtering can be performed in software (such as a software rendering package) or in hardware ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trilinear Filtering
Trilinear filtering is an extension of the bilinear texture filtering method, which also performs linear interpolation between mipmaps. Bilinear filtering has several weaknesses that make it an unattractive choice in many cases: using it on a full-detail texture when scaling to a very small size causes accuracy problems from missed texels, and compensating for this by using multiple mipmaps throughout the polygon leads to abrupt changes in blurriness, which is most pronounced in polygons that are steeply angled relative to the camera. To solve this problem, trilinear filtering interpolates between the results of bilinear filtering on the two mipmaps nearest to the detail required for the polygon at the pixel. If the pixel would take up 1/100 of the texture in one direction, trilinear filtering would interpolate between the result of filtering the 128×128 mipmap as y1 with x1 as 128, and the result of filtering on the 64×64 mipmap as y2 with x2 as 64, and then interpolate to { ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Level Of Detail (computer Graphics)
In computer graphics, level of detail (LOD) refers to the complexity of a 3D model representation. LOD can be decreased as the model moves away from the viewer or according to other metrics such as object importance, viewpoint-relative speed or position. LOD techniques increase the efficiency of rendering by decreasing the workload on graphics pipeline stages, usually vertex transformations. The reduced visual quality of the model is often unnoticed because of the small effect on object appearance when distant or moving fast. Although most of the time LOD is applied to geometry detail only, the basic concept can be generalized. Recently, LOD techniques also included shader management to keep control of pixel complexity. A form of level of detail management has been applied to texture maps for years, under the name of mipmapping, also providing higher rendering quality. It is commonplace to say that "an object has been ''LOD-ed''" when the object is simplified by the underlying ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spatial Anti-aliasing
In digital signal processing, spatial anti-aliasing is a technique for minimizing the distortion artifacts (aliasing) when representing a high-resolution image at a lower resolution. Anti-aliasing is used in digital photography, computer graphics, digital audio, and many other applications. Anti-aliasing means removing signal components that have a higher frequency than is able to be properly resolved by the recording (or sampling) device. This removal is done before (re)sampling at a lower resolution. When sampling is performed without removing this part of the signal, it causes undesirable artifacts such as black-and-white noise. In signal acquisition and audio, anti-aliasing is often done using an analog anti-aliasing filter to remove the out-of-band component of the input signal prior to sampling with an analog-to-digital converter. In digital photography, optical anti-aliasing filters made of birefringent materials smooth the signal in the spatial optical domain. The anti-a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Texture Mapping
Texture mapping is a method for mapping a texture on a computer-generated graphic. Texture here can be high frequency detail, surface texture, or color. History The original technique was pioneered by Edwin Catmull in 1974. Texture mapping originally referred to diffuse mapping, a method that simply mapped pixels from a texture to a 3D surface ("wrapping" the image around the object). In recent decades, the advent of multi-pass rendering, multitexturing, mipmaps, and more complex mappings such as height mapping, bump mapping, normal mapping, displacement mapping, reflection mapping, specular mapping, occlusion mapping, and many other variations on the technique (controlled by a materials system) have made it possible to simulate near-photorealism in real time by vastly reducing the number of polygons and lighting calculations needed to construct a realistic and functional 3D scene. Texture maps A is an image applied (mapped) to the surface of a shape or polygon. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Graphics
Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research. Some topics in computer graphics include user interface design, sprite graphics, rendering, ray tracing, geometry processing, computer animation, vector graphics, 3D modeling, shaders, GPU design, implicit surfaces, visualization, scientific c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lance Williams (graphics Researcher)
Lance J. Williams (September 25, 1949 – August 20, 2017) was a prominent graphics researcher who made major contributions to texture map prefiltering, shadow rendering algorithms, facial animation, and antialiasing techniques. Williams was one of the first people to recognize the potential of computer graphics to transform film and video making. Williams died at 67 years old on August 20th, 2017, after a battle with cancer. He is survived by his wife and two children. Education Williams was an Honors student majoring in English with a minor in Asian Studies at the University of Kansas and graduated with a B.A. in 1972. While a student at KU he competed in collegiate chess tournaments and is said to have had a rating of 1800. He was drawn to the University of Utah by a "Humanistic Computation" summer seminar held by Jef Raskin at KU. He joined the graduate Computer Science program at the University of Utah in 1973 and studied computer graphics and animation under Ivan Sutherland, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moiré Pattern
In mathematics, physics, and art, moiré patterns ( , , ) or moiré fringes are large-scale interference patterns that can be produced when an opaque ruled pattern with transparent gaps is overlaid on another similar pattern. For the moiré interference pattern to appear, the two patterns must not be completely identical, but rather displaced, rotated, or have slightly different pitch. Moiré patterns appear in many situations. In printing, the printed pattern of dots can interfere with the image. In television and digital photography, a pattern on an object being photographed can interfere with the shape of the light sensors to generate unwanted artifacts. They are also sometimes created deliberately – in micrometers they are used to amplify the effects of very small movements. In physics, its manifestation is wave interference such as that seen in the double-slit experiment and the beat phenomenon in acoustics. Etymology The term originates from '' moire'' (''moiré' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavelet Compression
In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. Definition A function \psi \,\in\, L^2(\mathbb) is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space L^2\left(\mathbb\right) of square integrable functions. The Hilbert basis is constructed as the family of functions \ by means of dyadic translations and dilations of \psi\,, :\psi_(x) = 2^\frac \psi\left(2^jx - k\right)\, for integers j,\, k \,\in\, \mathbb. If under the standard inner product on L^2\left(\mathbb\right), :\langle f, g\rangle = \int_^\infty f(x)\overlinedx this family is orthonormal, it is an orthonormal system: :\begin \langle\psi_,\psi_\rangle &= \int_^\infty \psi_(x)\overlinedx \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trilinear Interpolation
Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid. It approximates the value of a function at an intermediate point (x, y, z) within the local axial rectangular prism linearly, using function data on the lattice points. For an arbitrary, unstructured mesh (as used in finite element analysis), other methods of interpolation must be used; if all the mesh elements are tetrahedra (3D simplices), then barycentric coordinates provide a straightforward procedure. Trilinear interpolation is frequently used in numerical analysis, data analysis, and computer graphics. Compared to linear and bilinear interpolation Trilinear interpolation is the extension of linear interpolation, which operates in spaces with dimension D = 1, and bilinear interpolation, which operates with dimension D = 2, to dimension D = 3. These interpolation schemes all use polynomials of order 1, giving an accuracy of order 2, and it requires 2^D = 8 adjacent pre-defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]