Minimum-cost Flow Problem
   HOME





Minimum-cost Flow Problem
The minimum-cost flow problem (MCFP) is an optimization and decision problem to find the cheapest possible way of sending a certain amount of flow through a flow network. A typical application of this problem involves finding the best delivery route from a factory to a warehouse where the road network has some capacity and cost associated. The minimum cost flow problem is one of the most fundamental among all flow and circulation problems because most other such problems can be cast as a minimum cost flow problem and also that it can be solved efficiently using the network simplex algorithm. Definition A flow network is a directed graph G=(V,E) with a source vertex s \in V and a sink vertex t \in V, where each edge (u,v) \in E has capacity c(u,v) > 0, flow f(u,v) and cost a(u,v), with most minimum-cost flow algorithms supporting edges with negative costs. The cost of sending this flow along an edge (u,v) is f(u,v)\cdot a(u,v). The problem requires an amount of flow d to be se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maxima and minima, maximizing or minimizing a Function of a real variable, real function by systematically choosing Argument of a function, input values from within an allowed set and computing the Value (mathematics), value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. Optimization problems Opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Polynomial
In computer science, a '' polynomial-time algorithm'' is generally speaking an algorithm whose running time is upper-bounded by some polynomial function of the input size. The definition naturally depends on the computational model, which determines how the ''running time'' is measured, and how the ''input size'' is measured. Two prominent computational models are the Turing-machine model and the arithmetic model. A strongly-polynomial time algorithm is polynomial in both models, whereas a weakly-polynomial time algorithm is polynomial only in the Turing machine model. The difference between strongly- and weakly-polynomial time is when the inputs to the algorithms consist of integer or rational numbers. It is particularly common in optimization. Computational models Two common computational models are the Turing-machine model and the arithmetic model: * In the arithmetic model, every real number requires a single memory cell, whereas in the Turing model the storage size ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Network Flow Problem
In combinatorial optimization, network flow problems are a class of computational problems in which the input is a flow network (a graph with numerical capacities on its edges), and the goal is to construct a flow, numerical values on each edge that respect the capacity constraints and that have incoming flow equal to outgoing flow at all vertices except for certain designated terminals. Specific types of network flow problems include: *The maximum flow problem, in which the goal is to maximize the total amount of flow out of the source terminals and into the sink terminals *The minimum-cost flow problem, in which the edges have costs as well as capacities and the goal is to achieve a given amount of flow (or a maximum flow) that has the minimum possible cost *The multi-commodity flow problem, in which one must construct multiple flows for different commodities whose total flow amounts together respect the capacities * Nowhere-zero flow, a type of flow studied in combinatorics in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GNU Linear Programming Kit
The GNU Linear Programming Kit (GLPK) is a software package intended for solving large-scale linear programming (LP), mixed integer programming (MIP), and other related problems. It is a set of routines written in ANSI C and organized in the form of a callable library. The package is part of the GNU Project and is released under the GNU General Public License. GLPK uses the revised simplex method and the primal-dual interior point method for non-integer problems and the branch-and-bound algorithm together with Gomory's mixed integer cuts for (mixed) integer problems. History GLPK was developed by Andrew O. Makhorin (Андрей Олегович Махорин) of the Moscow Aviation Institute. The first public release was in October 2000. * Version 1.1.1 contained a library for a revised primal and dual simplex algorithm. * Version 2.0 introduced an implementation of the primal-dual interior point method. * Version 2.2 added branch and bound solving of mixed integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LEMON (C++ Library)
The lemon (''Citrus'' × ''limon'') is a species of small evergreen tree in the ''Citrus'' genus of the flowering plant family Rutaceae. A true lemon is a hybrid of the citron and the bitter orange. Its origins are uncertain, but some evidence suggests lemons originated during the 1st millennium BC in what is now northeastern India. Some other citrus fruits are called ''lemon''. The yellow fruit of the lemon tree is used throughout the world, primarily for its juice. The pulp and rind are used in cooking and baking. The juice of the lemon is about 5–6% citric acid, giving it a sour taste. This makes it a key ingredient in drinks and foods such as lemonade and lemon meringue pie. In 2022, world production was 22 million tonnes, led by India with 18% of the total. Description The lemon tree produces a pointed oval yellow fruit. Botanically this is a hesperidium, a modified berry with a tough, leathery rind. The rind is divided into an outer colored layer or zest, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theory), independent sets U and V, that is, every edge (graph theory), edge connects a Vertex (graph theory), vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycle (graph theory), cycles. The two sets U and V may be thought of as a graph coloring, coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a Gallery of named graphs, triangle: after one node is colored blue and another red, the third vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimum Weight Bipartite Matching
In mathematical analysis, the maximum and minimum of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given range (the ''local'' or ''relative'' extrema) or on the entire domain (the ''global'' or ''absolute'' extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. In statistics, the corresponding concept is the sample maximum and minimum. Definition A real-valued function ''f'' defined on a domain ''X'' has a global (or absolute) maximum point at ''x''∗, if for all ''x'' in ''X''. Similarly, the function has a global (or absolute) minimum point at ''x''∗, if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Out-of-kilter Algorithm
The out-of-kilter algorithm is an algorithm that computes the solution to the minimum-cost flow problem in a flow network. It was published in 1961 by D. R. Fulkerson Delbert Ray Fulkerson (; August 14, 1924 – January 10, 1976) was an American mathematician who co-developed the FordFulkerson algorithm, one of the most well-known algorithms to solve the maximum flow problem in networks. Early life and educa ... and is described here. The analog of steady state flow in a network of nodes and arcs may describe a variety of processes. Examples include transportation systems & personnel assignment actions. Arcs generally have cost & capacity parameters. A recurring problem is trying to determine the minimum cost route between two points in a capacitated network. The idea of the algorithm is to identify out-of-kilter arcs and modify the flow network until all arcs are in-kilter and a minimum cost flow has been reached. The algorithm can be used to minimize the total cost of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplex Method
In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are not actually used in the method, but one interpretation of it is that it operates on simplicial ''cones'', and these become proper simplices with an additional constraint. The simplicial cones in question are the corners (i.e., the neighborhoods of the vertices) of a geometric object called a polytope. The shape of this polytope is defined by the constraints applied to the objective function. History George Dantzig worked on planning methods for the US Army Air Force during World War II using a desk calculator. During 1946, his colleague challenged him to mechanize the planning process to distract him from taking another job. Dantzig formulated the problem as linear inequalities inspired by the work of Wassily Leontief, however, at that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Network Simplex Algorithm
In mathematical optimization, the network simplex algorithm is a graph theoretic specialization of the simplex algorithm. The algorithm is usually formulated in terms of a minimum-cost flow problem. The network simplex method works very well in practice, typically 200 to 300 times faster than the simplex method applied to general linear program of same dimensions. History For a long time, the existence of a provably efficient network simplex algorithm was one of the major open problems in complexity theory, even though efficient-in-practice versions were available. In 1995 Orlin provided the first polynomial algorithm with runtime of O(V^2 E \log(VC)) where C is maximum cost of any edges. Later Tarjan improved this to O(VE \log V \log(VC)) using dynamic trees in 1997. Strongly polynomial dual network simplex algorithms for the same problem, but with a higher dependence on the numbers of edges and vertices in the graph, have been known for longer. Overview The network simplex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ford–Fulkerson Algorithm
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network. It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified or it is specified in several implementations with different running times. It was published in 1956 by L. R. Ford Jr. and D. R. Fulkerson. The name "Ford–Fulkerson" is often also used for the Edmonds–Karp algorithm, which is a fully defined implementation of the Ford–Fulkerson method. The idea behind the algorithm is as follows: as long as there is a path from the source (start node) to the sink (end node), with available capacity on all edges in the path, we send flow along one of the paths. Then we find another path, and so on. A path with available capacity is called an augmenting path. Algorithm Let G(V,E) be a graph, and for each edge from to , let c(u,v) be the capacity and f(u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]