Mean Dimension
   HOME
*





Mean Dimension
In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological  dynamical systems in shift spaces (over Euclidean cubes). General definition A topological dynamical system consists of a compact Hausdorff topological space \textstyle X and a continuous self-map \textstyle T:X\rightarrow X. Let \t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Dynamical System
In mathematics, topological dynamics is a branch of the theory of dynamical systems in which qualitative, asymptotic properties of dynamical systems are studied from the viewpoint of general topology. Scope The central object of study in topological dynamics is a topological dynamical system, i.e. a topological space, together with a continuous transformation, a continuous flow, or more generally, a semigroup of continuous transformations of that space. The origins of topological dynamics lie in the study of asymptotic properties of trajectories of systems of autonomous ordinary differential equations, in particular, the behavior of limit sets and various manifestations of "repetitiveness" of the motion, such as periodic trajectories, recurrence and minimality, stability, non-wandering points. George Birkhoff is considered to be the founder of the field. A structure theorem for minimal distal flows proved by Hillel Furstenberg in the early 1960s inspired much work on classificati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mikhail Leonidovich Gromov
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; russian: link=no, Михаи́л Леони́дович Гро́мов; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of IHÉS in France and a professor of mathematics at New York University. Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry". Biography Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His Russian father Leonid Gromov and his Jewish mother Lea Rabinovitz were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine years old, his mother ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elon Lindenstrauss
Elon Lindenstrauss ( he, אילון לינדנשטראוס, born August 1, 1970) is an Israeli mathematician, and a winner of the 2010 Fields Medal. Since 2004, he has been a professor at Princeton University. In 2009, he was appointed to Professor at the Mathematics Institute at the Hebrew University. Biography Lindenstrauss was born into an Israeli-Jewish family with German Jewish origins. He was also born into a mathematical family, the son of the mathematician Joram Lindenstrauss, the namesake of the Johnson–Lindenstrauss lemma, and computer scientist Naomi Lindenstrauss, both professors at the Hebrew University of Jerusalem. His sister Ayelet Lindenstrauss is also a mathematician. He attended the Hebrew University Secondary School. In 1988 he was awarded a bronze medal at the International Mathematical Olympiad. He enlisted to the IDF's Talpiot program, and studied at the Hebrew University of Jerusalem, where he earned his BSc in Mathematics and Physics in 1991 and his m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Benjamin Weiss
Benjamin Weiss ( he, בנימין ווייס; born 1941) is an American-Israeli mathematician known for his contributions to ergodic theory, topological dynamics, probability theory, game theory, and descriptive set theory. Biography Benjamin ("Benjy") Weiss was born in New York City. In 1962 he received B.A. from Yeshiva University and M.A. from the Graduate School of Science, Yeshiva University. In 1965, he received his Ph.D. from Princeton under the supervision of William Feller. Academic career Between 1965 and 1967, Weiss worked at the IBM Research. In 1967, he joined the faculty of the Hebrew University of Jerusalem; and since 1990 occupied the Miriam and Julius Vinik Chair in Mathematics (Emeritus since 2009). Weiss held visiting positions at Stanford, MSRI, and IBM Research Center. Weiss published over 180 papers in ergodic theory, topological dynamics, orbit equivalence, probability, information theory, game theory, descriptive set theory; with notable contribution ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Entropy
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Space
In mathematics, a universal space is a certain metric space that contains all metric spaces whose dimension is bounded by some fixed constant. A similar definition exists in topological dynamics. Definition Given a class \textstyle \mathcal of topological spaces, \textstyle \mathbb\in\mathcal is universal for \textstyle \mathcal if each member of \textstyle \mathcal embeds in \textstyle \mathbb. Menger stated and proved the case \textstyle d=1 of the following theorem. The theorem in full generality was proven by Nöbeling. Theorem: The \textstyle (2d+1)-dimensional cube \textstyle ,1 is universal for the class of compact metric spaces whose Lebesgue covering dimension is less than \textstyle d. Nöbeling went further and proved: Theorem: The subspace of \textstyle ,1 consisting of set of points, at most \textstyle d of whose coordinates are rational, is universal for the class of separable metric spaces whose Lebesgue covering dimension is less than \textstyle d. The last ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Covering Dimension
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean spaces, the Lebesgue covering dimension is just the ordinary Euclidean dimension: zero for points, one for lines, two for planes, and so on. However, not all topological spaces have this kind of "obvious" dimension, and so a precise definition is needed in such cases. The definition proceeds by examining what happens when the space is covered by open sets. In general, a topological space ''X'' can be covered by open sets, in that one can find a collection of open sets such that ''X'' lies inside of their union. The covering dimension is the smallest number ''n'' such that for every cover, there is a refinement in which every point in ''X'' lies in the intersection of no more than ''n'' + 1 covering sets. This is the gist of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable Space
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ... d : X \times X \to [0, \infty) such that the topology induced by d is \mathcal. Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff space, Hausdorff paracompact spaces (and hence Normal space, normal and Tychonoff space, Tychonoff) and First-countable space, first-countable. However, some properties of the metric, such as completeness, cannot be said ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension Theory
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found nec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Entropy
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]