Moving Lemma
   HOME
*





Moving Lemma
In algebraic geometry, Chow's moving lemma, proved by , states: given algebraic cycles ''Y'', ''Z'' on a nonsingular quasi-projective variety ''X'', there is another algebraic cycle ''Z' '' on ''X'' such that ''Z' '' is rationally equivalent In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined inte ... to ''Z'' and ''Y'' and ''Z' '' intersect properly. The lemma is one of key ingredients in developing the intersection theory, as it is used to show the uniqueness of the theory. Even if ''Z'' is an effective cycle, it is not, in general, possible to choose the cycle ''Z' '' to be effective. References * * Theorems in algebraic geometry Chinese mathematical discoveries, Zhou, Weiliang {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Cycles
In mathematics, an algebraic cycle on an algebraic variety ''V'' is a formal linear combination of subvarieties of ''V''. These are the part of the algebraic topology of ''V'' that is directly accessible by algebraic methods. Understanding the algebraic cycles on a variety can give profound insights into the structure of the variety. The most trivial case is codimension zero cycles, which are linear combinations of the irreducible components of the variety. The first non-trivial case is of codimension one subvarieties, called divisors. The earliest work on algebraic cycles focused on the case of divisors, particularly divisors on algebraic curves. Divisors on algebraic curves are formal linear combinations of points on the curve. Classical work on algebraic curves related these to intrinsic data, such as the regular differentials on a compact Riemann surface, and to extrinsic properties, such as embeddings of the curve into projective space. While divisors on higher-dimensiona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Variety
In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology. Definition First, let ''X'' be an affine scheme of finite type over a field ''k''. Equivalently, ''X'' has a closed immersion into affine space ''An'' over ''k'' for some natural number ''n''. Then ''X'' is the closed subscheme defined by some equations ''g''1 = 0, ..., ''g''''r'' = 0, where each ''gi'' is in the polynomial ring ''k'' 'x''1,..., ''x''''n'' The affine scheme ''X'' is smooth of dimension ''m'' over ''k'' if ''X'' has dimension at least ''m'' in a neighborhood of each point, and the matrix of derivatives (∂''g''''i''/∂''x''''j'') has rank at least ''n''−''m'' everywhere on ''X''. (It follows that ''X'' has dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-projective Variety
In mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a ''quasi-projective scheme'' is a locally closed subscheme of some projective space. Relationship to affine varieties An affine space is a Zariski-open subset of a projective space, and since any closed affine subset U can be expressed as an intersection of the projective completion \bar and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective. There are locally closed subsets of projective space that are not affine, so that quasi-projective is more general than affine. Taking the complement of a single point in projective space of dimension at least 2 gives a non-affine quasi-projective variety. This is also an example of a quasi-projective variety that is neithe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rationally Equivalent
In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined intersection products. Pierre Samuel formalized the concept of an adequate equivalence relation in 1958. Since then it has become central to theory of motives. For every adequate equivalence relation, one may define the category of pure motives with respect to that relation. Possible (and useful) adequate equivalence relations include ''rational'', ''algebraic'', ''homological'' and ''numerical equivalence''. They are called "adequate" because dividing out by the equivalence relation is functorial, i.e. push-forward (with change of codimension) and pull-back of cycles is well-defined. Codimension 1 cycles modulo rational equivalence form the classical group of divisors modulo linear equivalence. All cycles modulo rational equivalence form the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE