Mirror Nuclei
In physics, mirror nuclei are a pair of isotopes of two different elements where the number of protons of isotope one (Z1) equals the number of neutrons of isotope two (N2) and the number of protons of isotope two (Z2) equals the number of neutrons in isotope one (N1); in short: Z1 = N2 and Z2 = N1. This implies that the mass numbers of the isotopes are the same: N1 + Z1 = N2 + Z2. Examples of mirror nuclei: Pairs of mirror nuclei have the same spin and parity. If we constrain to odd number of nucleons (A=Z+N) then we find mirror nuclei that differ from one another by exchanging a proton by a neutron. Interesting to observe is their binding energy which is mainly due to the strong interaction and also due to Coulomb interaction. Since the strong interaction is invariant to protons and neutrons one can expect these mirror nuclei to have very similar binding energies In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties. The term isotope is formed from the Greek roots isos ( ἴσος "equal") and topos ( τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in 1913 in a suggestion to the British chemist Frederick Soddy. The number of protons within the atom's nucleus is called its atomic number and is equal to the number of electrons in the neutral (non-ionized) atom. Each atomic numbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Element (chemistry)
A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler substances by any chemical reaction. The number of protons in the nucleus is the defining property of an element, and is referred to as its atomic number (represented by the symbol ''Z'') – all atoms with the same atomic number are atoms of the same element. Almost all of the baryonic matter of the universe is composed of chemical elements (among rare exceptions are neutron stars). When different elements undergo chemical reactions, atoms are rearranged into new compounds held together by chemical bonds. Only a minority of elements, such as silver and gold, are found uncombined as relatively pure native element minerals. Nearly all other naturally occurring elements occur in the Earth as compounds or mixtures. Air is primarily a mixture of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Hydrogen
Hydrogen (1H) has three naturally occurring isotopes, sometimes denoted , , and . and are stable, while has a half-life of years. Heavier isotopes also exist, all of which are synthetic and have a half-life of less than one zeptosecond (10−21 s). Of these, is the least stable, while is the most. Hydrogen is the only element whose isotopes have different names that remain in common use today: the (or hydrogen-2) isotope is deuterium and the (or hydrogen-3) isotope is tritium. The symbols D and T are sometimes used for deuterium and tritium. The IUPAC accepts the D and T symbols, but recommends using standard isotopic symbols ( and ) instead to avoid confusion in the alphabetic sorting of chemical formulas. The isotope , with no neutrons, is sometimes called protium. (During the early study of radioactivity, some other heavy radioactive isotopes were given names, but such names are rarely used today.) List of isotopes , - , , 1 , 0 , , colspan=3 align=ce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Helium
Although there are nine known isotopes of helium (2He) ( standard atomic weight: ), only helium-3 () and helium-4 () are stable. All radioisotopes are short-lived, the longest-lived being with a half-life of . The least stable is , with a half-life of (), although it is possible that may have an even shorter half-life. In the Earth's atmosphere, the ratio of to is . However, the isotopic abundance of helium varies greatly depending on its origin. In the Local Interstellar Cloud, the proportion of to is , which is times higher than that of atmospheric helium. Rocks from the Earth's crust have isotope ratios varying by as much as a factor of ten; this is used in geology to investigate the origin of rocks and the composition of the Earth's mantle. The different formation processes of the two stable isotopes of helium produce the differing isotope abundances. Equal mixtures of liquid and below separate into two immiscible phases due to differences in quantum statistics: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Carbon
Carbon (6C) has 15 known isotopes, from to , of which and are stable nuclide, stable. The longest-lived radionuclide, radioisotope is , with a half-life of years. This is also the only carbon radioisotope found in nature—trace quantities are formed cosmogenic nuclide, cosmogenically by the reaction + → + . The most stable artificial radioisotope is , which has a half-life of . All other radioisotopes have half-lives under 20 seconds, most less than 200 milliseconds. The least stable isotope is , with a half-life of . List of isotopes , - , , style="text-align:right" , 6 , style="text-align:right" , 2 , , [] , proton emission, 2p , Subsequently decays by double proton emission to for a net reaction of → + 4 , 0+ , , , - , rowspan=3, , rowspan=3 style="text-align:right" , 6 , rowspan=3 style="text-align:right" , 3 , rowspan=3, , rowspan=3, , β+ () , , rowspan=3, 3/2− , rowspan=3, , rowspan=3, , - , β+α () , Immediately decays ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Oxygen
There are three known stable isotopes of oxygen (8O): , , and . Radioactive isotopes ranging from to have also been characterized, all short-lived. The longest-lived radioisotope is with a half-life of , while the shortest-lived isotope is with a half-life of (though the half-lives of the neutron-unbound and are still unknown). List of isotopes , - , , style="text-align:right" , 8 , style="text-align:right" , 3 , , [] , proton emission, 2p , , (3/2−) , , , - , , style="text-align:right" , 8 , style="text-align:right" , 4 , , , 2p , , 0+ , , , - , rowspan=2, , rowspan=2 style="text-align:right" , 8 , rowspan=2 style="text-align:right" , 5 , rowspan=2, , rowspan=2, , β+ () , , rowspan=2, (3/2−) , rowspan=2, , rowspan=2, , - , β+p () , , - , , style="text-align:right" , 8 , style="text-align:right" , 6 , , , β+ , , 0+ , , , - , , style="text-align:right" , 8 , style="text-align:right" , 7 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Nitrogen
Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25, along with one nuclear isomer, 11mN. All of these radioisotopes are short-lived, the longest-lived being nitrogen-13 with a half-life of . All of the others have half-lives below 7.15 seconds, with most of these being below 620 milliseconds. Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of . List of isotopes , - , , style="text-align:right" , 7 , style="text-align:right" , 3 , , , p ?Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide. , ? , 1−, 2− , , , - , , style="text-align:r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Sodium
There are 22 isotopes of sodium (11Na), ranging from to , and two isomers ( and ). is the only stable (and the only primordial) isotope. It is considered a monoisotopic element and it has a standard atomic weight of . Sodium has two radioactive cosmogenic isotopes (, with a half-life of ; and , with a half-life of ). With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is , with a half-life of seconds. Acute neutron radiation exposure (e.g., from a nuclear criticality accident) converts some of the stable in human blood plasma to . By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed. is a positron-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for positron emission tomography. List of isotopes , - , , style="text-align:right" , 11 , style="text-align:right" , 6 , , , p , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Aluminium
Aluminium or ''aluminum'' (13Al) has 22 known isotopes from 22Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = ) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is . 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. 26Al has also played a significant role in the study of meteorites. List of isotopes , - , 21Al?This isotope has not yet been confirmed experimentally; given data is inferred or estimated from periodic trends ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei). One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol ''Z''). Since each element has a unique number of protons, each element has its own unique atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element. The word ''proton'' is Greek for "first", and this name was given to the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks. The chemical properties of an atom are mostly determined by the configuration of electrons that orbit the atom's heavy nucleus. The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number. The number of neutrons is the neutron number. Neutrons do not affect the electron configuration, but the sum of atomic and neutron numbers is the mass of the nucleus. Atoms of a chemical element t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |