HOME

TheInfoList



OR:

A chemical element is a species of
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s that have a given number of
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s in their nuclei, including the pure
substance Substance may refer to: * Matter, anything that has mass and takes up space Chemistry * Chemical substance, a material with a definite chemical composition * Drug substance ** Substance abuse, drug-related healthcare and social policy diagnosis ...
consisting only of that species. Unlike
chemical compounds A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
, chemical elements cannot be broken down into simpler substances by any chemical reaction. The number of protons in the nucleus is the defining property of an element, and is referred to as its
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
(represented by the symbol ''Z'') – all atoms with the same atomic number are atoms of the same element. Almost all of the
baryonic In particle physics, a baryon is a type of composite particle, composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron list of particles, family of particles; hadrons are composed o ...
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
of the universe is composed of chemical elements (among rare exceptions are
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
s). When different elements undergo
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s, atoms are rearranged into new compounds held together by
chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of ...
s. Only a minority of elements, such as
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
and
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
, are found uncombined as relatively pure
native element mineral Native element minerals are those elements that occur in nature in uncombined form with a distinct mineral structure. The elemental class includes metals, intermetallic compounds, alloys, metalloids, and nonmetals. The Nickel–Strunz cla ...
s. Nearly all other naturally occurring elements occur in the Earth as compounds or
mixture In chemistry, a mixture is a material made up of two or more different chemical substances which are not chemically bonded. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the ...
s.
Air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
is primarily a mixture of the elements
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
, and
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
, though it does contain compounds including
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
and
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
. The history of the discovery and use of the elements began with primitive
human societies A society is a group of individuals involved in persistent social interaction, or a large social group sharing the same spatial or social territory, typically subject to the same political authority and dominant cultural expectations. Societi ...
that discovered native minerals like
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
and gold (though the concept of a chemical element was not yet understood). Attempts to classify materials such as these resulted in the concepts of
classical element Classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had simil ...
s,
alchemy Alchemy (from Arabic: ''al-kīmiyā''; from Ancient Greek: χυμεία, ''khumeía'') is an ancient branch of natural philosophy, a philosophical and protoscientific tradition that was historically practiced in China, India, the Muslim world, ...
, and various similar theories throughout human history. Much of the modern understanding of elements developed from the work of
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February Old_Style_and_New_Style_dates">O.S._27_January.html" ;"title="O ...
, a Russian chemist who published the first recognizable
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
in 1869. This table organizes the elements by increasing atomic number into rows (" periods") in which the columns ("
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
") share recurring ("periodic")
physical Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally co ...
and
chemical properties A chemical property is any of a material's properties that becomes evident during, or after, a chemical reaction; that is, any quality that can be established only by changing a substance's chemical identity.William L. Masterton, Cecile N. Hurley ...
. The periodic table summarizes various properties of the elements, allowing chemists to derive relationships between them and to make predictions about compounds and potential new ones. By November 2016, the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
had recognized a total of 118 elements. The first 94 occur naturally on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, and the remaining 24 are
synthetic element A synthetic element is one of 24 known chemical elements that do not occur naturally on Earth: they have been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; ...
s produced in
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
s. Save for unstable radioactive elements (
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transfer ...
s) which
decay Decay may refer to: Science and technology * Bit decay, in computing * Software decay, in computing * Distance decay, in geography * Decay time (fall time), in electronics Biology * Decomposition of organic matter * Tooth decay (dental caries) ...
quickly, nearly all of the elements are available industrially in varying amounts. The discovery and synthesis of further new elements is an ongoing area of scientific study.


Description

The lightest chemical elements are
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, both created by
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) du ...
during the first 20 minutes of the universe in a
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of around 3:1 by mass (or 12:1 by number of atoms), along with tiny traces of the next two elements,
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
and
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
. Almost all other elements found in nature were made by various natural methods of
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
. On
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, small amounts of new atoms are naturally produced in
nucleogenic A nucleogenic isotope, or nuclide, is one that is produced by a natural terrestrial nuclear reaction, other than a reaction beginning with cosmic rays (the latter nuclides by convention are called by the different term cosmogenic). The nuclear react ...
reactions, or in
cosmogenic Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an ''in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ...
processes, such as
cosmic ray spallation Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly energ ...
. New atoms are also naturally produced on Earth as
radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
daughter isotopes of ongoing
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
processes such as
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atom ...
,
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
,
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
,
cluster decay Cluster decay, also named heavy particle radioactivity or heavy ion radioactivity, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typic ...
, and other rarer modes of decay. Of the 94 naturally occurring elements, those with atomic numbers 1 through 82 each have at least one
stable isotope The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
(except for
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
, element 43 and
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
, element 61, which have no stable isotopes). Isotopes considered stable are those for which no radioactive decay has yet been observed. Elements with atomic numbers 83 through 94 are
unstable In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
to the point that radioactive decay of all isotopes can be detected. Some of these elements, notably
bismuth Bismuth is a chemical element with the Symbol (chemistry), symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental ...
(atomic number 83),
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high me ...
(atomic number 90), and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
(atomic number 92), have one or more isotopes with half-lives long enough to survive as remnants of the explosive
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
that produced the
heavy metals upright=1.2, Crystals of osmium, a heavy metal nearly twice as dense as lead">lead.html" ;"title="osmium, a heavy metal nearly twice as dense as lead">osmium, a heavy metal nearly twice as dense as lead Heavy metals are generally defined as ...
before the formation of our
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. At over 1.9 years, over a billion times longer than the current estimated age of the universe,
bismuth-209 Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass un ...
(atomic number 83) has the longest known alpha decay half-life of any naturally occurring element, and is almost always considered on par with the 80 stable elements. The very heaviest elements (those beyond plutonium, element 94) undergo radioactive decay with
half-lives Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
so short that they are not found in nature and must be synthesized. There are now 118 known elements. In this context, "known" means observed well enough, even from just a few decay products, to have been differentiated from other elements. Most recently, the synthesis of element 118 (since named
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
) was reported in October 2006, and the synthesis of element 117 (
tennessine Tennessine is a synthetic chemical element with the symbol Ts and atomic number 117. It is the second-heaviest known element and the penultimate element of the 7th period of the periodic table. The discovery of tennessine was officially ann ...
) was reported in April 2010. Of these 118 elements, 94 occur naturally on Earth. Six of these occur in extreme trace quantities:
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
, atomic number 43;
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
, number 61;
astatine Astatine is a chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; ...
, number 85;
francium Francium is a chemical element with the symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain it appears in), has a half-life of only 22&nb ...
, number 87;
neptunium Neptunium is a chemical element with the Symbol (chemistry), symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after ...
, number 93; and
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, number 94. These 94 elements have been detected in the universe at large, in the spectra of stars and also supernovae, where short-lived radioactive elements are newly being made. The first 94 elements have been detected directly on Earth as
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s present from the formation of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, or as naturally occurring fission or transmutation products of uranium and thorium. The remaining 24 heavier elements, not found today either on Earth or in astronomical spectra, have been produced artificially: these are all radioactive, with very short half-lives; if any atoms of these elements were present at the formation of Earth, they are extremely likely, to the point of certainty, to have already decayed, and if present in novae have been in quantities too small to have been noted. Technetium was the first purportedly non-naturally occurring element synthesized, in 1937, although trace amounts of technetium have since been found in nature (and also the element may have been discovered naturally in 1925). This pattern of artificial production and later natural discovery has been repeated with several other radioactive naturally occurring rare elements. List of the elements are available by name, atomic number, density, melting point, boiling point and by symbol, as well as
ionization energies of the elements These tables list values of molar ionization energies, measured in kJ⋅mol−1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms. The sec ...
. The nuclides of stable and radioactive elements are also available as a
list of nuclides This list of nuclides shows observed nuclides that either are stable nuclide, stable or, if radioactive, have half-lives longer than one hour. This represents isotopes of the first 105 elements, except for elements 87 (francium) and 102 (nobelium). ...
, sorted by length of half-life for those that are unstable. One of the most convenient, and certainly the most traditional presentation of the elements, is in the form of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, which groups together elements with similar chemical properties (and usually also similar electronic structures).


Atomic number

The
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
of an element is equal to the number of protons in each atom, and defines the element. For example, all carbon atoms contain 6 protons in their
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
; so the atomic number of carbon is 6. Carbon atoms may have different numbers of neutrons; atoms of the same element having different numbers of neutrons are known as
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s of the element. The number of protons in the atomic nucleus also determines its
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
, which in turn determines the number of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s of the atom in its non-ionized state. The electrons are placed into
atomic orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any spe ...
s that determine the atom's various
chemical properties A chemical property is any of a material's properties that becomes evident during, or after, a chemical reaction; that is, any quality that can be established only by changing a substance's chemical identity.William L. Masterton, Cecile N. Hurley ...
. The number of neutrons in a nucleus usually has very little effect on an element's chemical properties (except in the case of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
). Thus, all carbon isotopes have nearly identical chemical properties because they all have six protons and six electrons, even though carbon atoms may, for example, have 6 or 8 neutrons. That is why the atomic number, rather than
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
or
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
, is considered the identifying characteristic of a chemical element. The symbol for atomic number is ''Z''.


Isotopes

Isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s are atoms of the same element (that is, with the same number of
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s in their
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
), but having ''different'' numbers of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s. Thus, for example, there are three main isotopes of carbon. All carbon atoms have 6 protons in the nucleus, but they can have either 6, 7, or 8 neutrons. Since the mass numbers of these are 12, 13 and 14 respectively, the three isotopes of carbon are known as
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 i ...
,
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mass ...
, and
carbon-14 Carbon-14, C-14, or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
, often abbreviated to 12C, 13C, and 14C.
Carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
in everyday life and in chemistry is a
mixture In chemistry, a mixture is a material made up of two or more different chemical substances which are not chemically bonded. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the ...
of 12C (about 98.9%), 13C (about 1.1%) and about 1 atom per trillion of 14C. Most (66 of 94) naturally occurring elements have more than one stable isotope. Except for the
isotopes of hydrogen Hydrogen (1H) has three naturally occurring isotopes, sometimes denoted , , and . and are stable, while has a half-life of years. Heavier isotopes also exist, all of which are synthetic and have a half-life of less than one zeptosecond (10 ...
(which differ greatly from each other in relative mass—enough to cause chemical effects), the isotopes of a given element are chemically nearly indistinguishable. All of the elements have some isotopes that are radioactive (
radioisotopes A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
), although not all of these radioisotopes occur naturally. The radioisotopes typically decay into other elements upon radiating an
alpha Alpha (uppercase , lowercase ; grc, ἄλφα, ''álpha'', or ell, άλφα, álfa) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter aleph , whic ...
or
beta particle A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β ...
. If an element has isotopes that are not radioactive, these are termed "stable" isotopes. All of the known stable isotopes occur naturally (see
primordial isotope In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
). The many radioisotopes that are not found in nature have been characterized after being artificially made. Certain elements have no stable isotopes and are composed ''only'' of radioactive isotopes: specifically the elements without any stable isotopes are technetium (atomic number 43), promethium (atomic number 61), and all observed elements with atomic numbers greater than 82. Of the 80 elements with at least one stable isotope, 26 have only one single stable isotope. The mean number of stable isotopes for the 80 stable elements is 3.1 stable isotopes per element. The largest number of stable isotopes that occur for a single element is 10 (for tin, element 50).


Isotopic mass and atomic mass

The
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
of an element, ''A'', is the number of
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s (protons and neutrons) in the atomic nucleus. Different isotopes of a given element are distinguished by their mass numbers, which are conventionally written as a superscript on the left hand side of the atomic symbol (e.g. 238U). The mass number is always a whole number and has units of "nucleons". For example,
magnesium-24 Magnesium (12Mg) naturally occurs in three stable isotopes: , , and . There are 19 radioisotopes that have been discovered, ranging from to . The longest-lived radioisotope is with a half-life of . The lighter isotopes mostly decay to isotopes o ...
(24 is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons). Whereas the mass number simply counts the total number of neutrons and protons and is thus a natural (or whole) number, the
atomic mass The atomic mass (''m''a or ''m'') is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1&nbs ...
of a single atom is a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
giving the mass of a particular isotope (or "nuclide") of the element, expressed in
atomic mass unit The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at ...
s (symbol: u). In general, the mass number of a given nuclide differs in value slightly from its atomic mass, since the mass of each proton and neutron is not exactly 1 u; since the electrons contribute a lesser share to the atomic mass as neutron number exceeds proton number; and (finally) because of the
nuclear binding energy Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the atomic nucleus, nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable n ...
. For example, the atomic mass of chlorine-35 to five significant digits is 34.969 u and that of chlorine-37 is 36.966 u. However, the atomic mass in u of each isotope is quite close to its simple mass number (always within 1%). The only isotope whose atomic mass is exactly a
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
is 12C, which by definition has a mass of exactly 12 because u is defined as 1/12 of the mass of a free neutral carbon-12 atom in the ground state. The
standard atomic weight The standard atomic weight of a chemical element (symbol ''A''r°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, is ...
(commonly called "atomic weight") of an element is the ''average'' of the atomic masses of all the chemical element's isotopes as found in a particular environment, weighted by isotopic abundance, relative to the atomic mass unit. This number may be a fraction that is ''not'' close to a whole number. For example, the relative atomic mass of chlorine is 35.453 u, which differs greatly from a whole number as it is an average of about 76% chlorine-35 and 24% chlorine-37. Whenever a relative atomic mass value differs by more than 1% from a whole number, it is due to this averaging effect, as significant amounts of more than one isotope are naturally present in a sample of that element.


Chemically pure and isotopically pure

Chemists and nuclear scientists have different definitions of a ''pure element''. In chemistry, a pure element means a substance whose atoms all (or in practice almost all) have the same
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
, or number of
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s. Nuclear scientists, however, define a pure element as one that consists of only one stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
. For example, a copper wire is 99.99% chemically pure if 99.99% of its atoms are copper, with 29 protons each. However it is not isotopically pure since ordinary copper consists of two stable isotopes, 69% 63Cu and 31% 65Cu, with different numbers of neutrons. However, a pure gold ingot would be both chemically and isotopically pure, since ordinary gold consists only of one isotope, 197Au.


Allotropes

Atoms of chemically pure elements may bond to each other chemically in more than one way, allowing the pure element to exist in multiple
chemical structure A chemical structure determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of at ...
s ( spatial arrangements of atoms), known as
allotropes Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
, which differ in their properties. For example, carbon can be found as
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the Chemical stability, chemically stable form of car ...
, which has a tetrahedral structure around each carbon atom;
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
, which has layers of carbon atoms with a hexagonal structure stacked on top of each other;
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
, which is a single layer of graphite that is very strong;
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
s, which have nearly spherical shapes; and
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s, which are tubes with a hexagonal structure (even these may differ from each other in electrical properties). The ability of an element to exist in one of many structural forms is known as 'allotropy'. The reference state of an element is defined by convention, usually as the thermodynamically most stable allotrope and physical state at a pressure of 1
bar Bar or BAR may refer to: Food and drink * Bar (establishment), selling alcoholic beverages * Candy bar * Chocolate bar Science and technology * Bar (river morphology), a deposit of sediment * Bar (tropical cyclone), a layer of cloud * Bar (u ...
and a given temperature (typically at 298.15K). However, for phosphorus, the reference state is white phosphorus even though it is not the most stable allotrope. In
thermochemistry Thermochemistry is the study of the heat energy which is associated with chemical reactions and/or phase changes such as melting and boiling. A reaction may release or absorb energy, and a phase change may do the same. Thermochemistry focuses on ...
, an element is defined to have an
enthalpy of formation Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
of zero in its reference state. For example, the reference state for carbon is graphite, because the structure of graphite is more stable than that of the other allotropes.


Properties

Several kinds of descriptive categorizations can be applied broadly to the elements, including consideration of their general physical and chemical properties, their states of matter under familiar conditions, their melting and boiling points, their densities, their crystal structures as solids, and their origins.


General properties

Several terms are commonly used to characterize the general physical and chemical properties of the chemical elements. A first distinction is between
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s, which readily conduct
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
,
nonmetal In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases (like hydrogen) to shiny solids (like carbon, as graphite). The electrons in nonmetals behave differentl ...
s, which do not, and a small group, (the ''
metalloid A metalloid is a type of chemical element which has a preponderance of material property, properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on ...
s''), having intermediate properties and often behaving as
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s. A more refined classification is often shown in colored presentations of the periodic table. This system restricts the terms "metal" and "nonmetal" to only certain of the more broadly defined metals and nonmetals, adding additional terms for certain sets of the more broadly viewed metals and nonmetals. The version of this classification used in the periodic tables presented here includes:
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
s,
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s,
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are al ...
s,
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s,
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s,
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s,
post-transition metal The metallic elements in the periodic table located between the transition metals and the chemically weak nonmetallic metalloids have received many names in the literature, such as ''post-transition metals'', ''poor metals'', ''other metals'', ...
s,
metalloid A metalloid is a type of chemical element which has a preponderance of material property, properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on ...
s, reactive nonmetals, and
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemi ...
es. In this system, the alkali metals, alkaline earth metals, and transition metals, as well as the lanthanides and the actinides, are special groups of the metals viewed in a broader sense. Similarly, the reactive nonmetals and the noble gases are nonmetals viewed in the broader sense. In some presentations, the halogens are not distinguished, with
astatine Astatine is a chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; ...
identified as a metalloid and the others identified as nonmetals.


States of matter

Another commonly used basic distinction among the elements is their
state of matter In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal ...
(phase), whether
solid Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
,
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
, or
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
, at a selected
standard temperature and pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union o ...
(STP). Most of the elements are solids at conventional temperatures and atmospheric pressure, while several are gases. Only
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simila ...
and
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
are liquids at 0 degrees Celsius (32 degrees Fahrenheit) and normal atmospheric pressure;
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
and
gallium Gallium is a chemical element with the symbol Ga and atomic number 31. Discovered by French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in group 13 of the periodic table and is similar to the other metals of the group (aluminiu ...
are solids at that temperature, but melt at 28.4 °C (83.2 °F) and 29.8 °C (85.6 °F), respectively.


Melting and boiling points

Melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which incre ...
and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
s, typically expressed in
degrees Celsius The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The ...
at a pressure of one atmosphere, are commonly used in characterizing the various elements. While known for most elements, either or both of these measurements is still undetermined for some of the radioactive elements available in only tiny quantities. Since
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
remains a liquid even at
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
at atmospheric pressure, it has only a boiling point, and not a melting point, in conventional presentations.


Densities

The
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
at selected standard temperature and pressure (
STP STP may refer to: Places * São Tomé and Príncipe (ISO 3166-1 alpha-3 code, IOC country code, and FIFA country code STP) * St Pancras railway station, London St Pancras (Domestic) railway station (National Rail code STP) * St. Paul Downtown Air ...
) is frequently used in characterizing the elements. Density is often expressed in
gram The gram (originally gramme; SI unit symbol g) is a Physical unit, unit of mass in the International System of Units (SI) equal to one one thousandth of a kilogram. Originally defined as of 1795 as "the absolute weight of a volume of pure wate ...
s per cubic centimeter (g/cm3). Since several elements are gases at commonly encountered temperatures, their densities are usually stated for their gaseous forms; when liquefied or solidified, the gaseous elements have densities similar to those of the other elements. When an element has
allotropes Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
with different densities, one representative allotrope is typically selected in summary presentations, while densities for each allotrope can be stated where more detail is provided. For example, the three familiar
allotropes of carbon Carbon is capable of forming many allotropy, allotropes (structurally different forms of the same element) due to its Valence (chemistry), valency. Well-known forms of carbon include diamond and graphite. In recent decades, many more allotrope ...
(
amorphous carbon Amorphous carbon is free, reactive carbon that has no crystalline structure. Amorphous carbon materials may be stabilized by terminating dangling-π bonds with hydrogen. As with other amorphous solids, some short-range order can be observed. Amorp ...
,
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
, and
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the Chemical stability, chemically stable form of car ...
) have densities of 1.8–2.1, 2.267, and 3.515 g/cm3, respectively.


Crystal structures

The elements studied to date as solid samples have eight kinds of crystal structures: cubic crystal system, cubic, cubic crystal system, body-centered cubic, cubic crystal system, face-centered cubic, Hexagonal crystal system, hexagonal, Monoclinic crystal system, monoclinic, orthorhombic crystal system, orthorhombic, Trigonal crystal system, rhombohedral, and Tetragonal crystal system, tetragonal. For some of the synthetically produced transuranic elements, available samples have been too small to determine crystal structures.


Occurrence and origin on Earth

Chemical elements may also be categorized by their origin on Earth, with the first 94 considered naturally occurring, while those with atomic numbers beyond 94 have only been produced artificially as the synthetic products of man-made nuclear reactions. Of the 94 naturally occurring elements, 83 are considered primordial nuclide, primordial and either stable isotope, stable or weakly radioactive. The remaining 11 naturally occurring elements possess Half-life, half lives too short for them to have been present at the beginning of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, and are therefore considered transient elements. Of these 11 transient elements, 5 (polonium, radon, radium, actinium, and protactinium) are relatively common decay products of
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high me ...
and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
. The remaining 6 transient elements (
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
,
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
,
astatine Astatine is a chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; ...
,
francium Francium is a chemical element with the symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain it appears in), has a half-life of only 22&nb ...
,
neptunium Neptunium is a chemical element with the Symbol (chemistry), symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after ...
, and
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
) occur only rarely, as products of rare decay modes or nuclear reaction processes involving uranium or other heavy elements. No radioactive decay has been observed for elements with atomic numbers 1 through 82, except 43 (
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
) and 61 (
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
). Observationally stable isotopes of some elements (such as tungsten and lead), however, are predicted to be slightly radioactive with very long half-lives: for example, the half-lives predicted for the observationally stable lead isotopes range from 1035 to 10189 years. Elements with atomic numbers 43, 61, and 83 through 94 are unstable enough that their radioactive decay can readily be detected. Three of these elements, bismuth (element 83), thorium (element 90), and uranium (element 92) have one or more isotopes with half-lives long enough to survive as remnants of the explosive
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
that produced the heavy elements before the formation of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. For example, at over 1.9 years, over a billion times longer than the current estimated age of the universe,
bismuth-209 Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass un ...
has the longest known
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atom ...
half-life of any naturally occurring element. The very heaviest 24 elements (those beyond plutonium, element 94) undergo radioactive decay with short half-lives and cannot be produced as daughters of longer-lived elements, and thus are not known to occur in nature at all.


Periodic table

The properties of the chemical elements are often summarized using the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, which powerfully and elegantly organizes the elements by increasing atomic number into rows (period (periodic table), "periods") in which the columns (group (periodic table), "groups") share recurring ("periodic") physical and chemical properties. The current standard table contains 118 confirmed elements as of 2021. Although earlier precursors to this presentation exist, its invention is generally credited to the Russian chemist
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February Old_Style_and_New_Style_dates">O.S._27_January.html" ;"title="O ...
in 1869, who intended the table to illustrate recurring trends in the properties of the elements. The layout of the table has been refined and extended over time as new elements have been discovered and new theoretical models have been developed to explain chemical behavior. Use of the periodic table is now ubiquitous within the academic discipline of chemistry, providing an extremely useful framework to classify, systematize and compare all the many different forms of chemical behavior. The table has also found wide application in physics, geology, biology, materials science, engineering, agriculture, medicine, nutrition, environmental health, and astronomy. Its principles are especially important in chemical engineering.


Nomenclature and symbols

The various chemical elements are formally identified by their unique
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
s, by their accepted names, and by their Symbol (chemistry), symbols.


Atomic numbers

The known elements have atomic numbers from 1 through 118, conventionally presented as Arabic numerals. Since the elements can be uniquely sequenced by atomic number, conventionally from lowest to highest (as in a
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
), sets of elements are sometimes specified by such notation as "through", "beyond", or "from ... through", as in "through iron", "beyond uranium", or "from lanthanum through lutetium". The terms "light" and "heavy" are sometimes also used informally to indicate relative atomic numbers (not densities), as in "lighter than carbon" or "heavier than lead", although technically the weight or mass of atoms of an element (their atomic weights or atomic masses) do not always increase monotonic function, monotonically with their atomic numbers.


Element names

The naming of various substances now known as elements precedes the Atomic theory, atomic theory of matter, as names were given locally by various cultures to various minerals, metals, compounds, alloys, mixtures, and other materials, although at the time it was not known which chemicals were elements and which compounds. As they were identified as elements, the existing names for anciently known elements (e.g., gold, mercury, iron) were kept in most countries. National differences emerged over the names of elements either for convenience, linguistic niceties, or nationalism. For a few illustrative examples: German speakers use "Wasserstoff" (water substance) for "hydrogen", "Sauerstoff" (acid substance) for "oxygen" and "Stickstoff" (smothering substance) for "nitrogen", while English and some romance languages use "sodium" for "natrium" and "potassium" for "kalium", and the French, Italians, Greeks, Portuguese and Poles prefer "azote/azot/azoto" (from roots meaning "no life") for "nitrogen". For purposes of international communication and trade, the Table of chemical elements, official names of the chemical elements both ancient and more recently recognized are decided by the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC), which has decided on a sort of international English language, drawing on traditional English names even when an element's chemical symbol is based on a Latin or other traditional word, for example adopting "gold" rather than "aurum" as the name for the 79th element (Au). IUPAC prefers the British spellings "aluminium" and "caesium" over the U.S. spellings "aluminum" and "cesium", and the U.S. "sulfur" over the British "sulphur". However, elements that are practical to sell in bulk in many countries often still have locally used national names, and countries whose national language does not use the Latin alphabet are likely to use the IUPAC element names. According to IUPAC, chemical elements are not proper nouns in English; consequently, the full name of an element is not routinely capitalized in English, even if derived from a proper noun, as in californium and einsteinium. Isotope names of chemical elements are also uncapitalized if written out, ''e.g.,''
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 i ...
or uranium-235. Chemical element ''symbols'' (such as Cf for californium and Es for einsteinium), are always capitalized (see below). In the second half of the twentieth century, physics laboratories became able to produce nuclei of chemical elements with half-lives too short for an appreciable amount of them to exist at any time. These are also named by IUPAC, which generally adopts the name chosen by the discoverer. This practice can lead to the controversial question of which research group actually discovered an element, a question that delayed the naming of elements with atomic number of 104 and higher for a considerable amount of time. (See element naming controversy). Precursors of such controversies involved the nationalistic namings of elements in the late 19th century. For example, ''lutetium'' was named in reference to Paris, France. The Germans were reluctant to relinquish naming rights to the French, often calling it ''cassiopeium''. Similarly, the British discoverer of ''niobium'' originally named it ''columbium,'' in reference to the New World. It was used extensively as such by American publications before the international standardization (in 1950).


Chemical symbols


Specific chemical elements

Before chemistry became a science, alchemy, alchemists had designed arcane symbols for both metals and common compounds. These were however used as abbreviations in diagrams or procedures; there was no concept of atoms combining to form molecules. With his advances in the atomic theory of matter, John Dalton devised his own simpler symbols, based on circles, to depict molecules. The current system of chemical notation was invented by Jöns Jakob Berzelius, Berzelius. In this typographical system, chemical symbols are not mere abbreviations—though each consists of letters of the Latin alphabet. They are intended as universal symbols for people of all languages and alphabets. The first of these symbols were intended to be fully universal. Since Latin was the common language of science at that time, they were abbreviations based on the Latin names of metals. Cu comes from cuprum, Fe comes from ferrum, Ag from argentum. The symbols were not followed by a period (full stop) as with abbreviations. Later chemical elements were also assigned unique chemical symbols, based on the name of the element, but not necessarily in English. For example, sodium has the chemical symbol 'Na' after the Latin ''natrium''. The same applies to "Fe" (ferrum) for iron, "Hg" (hydrargyrum) for Mercury (element), mercury, "Sn" (stannum) for tin, "Au" (aurum) for
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
, "Ag" (argentum) for
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
, "Pb" (plumbum) for lead, "Cu" (cuprum) for
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, and "Sb" (stibium) for antimony. "W" (wolfram) for tungsten ultimately derives from German, "K" (kalium) for potassium ultimately from Arabic. Chemical symbols are understood internationally when element names might require translation. There have sometimes been differences in the past. For example, Germans in the past have used "J" (for the alternate name Jod) for iodine, but now use "I" and "Iod". The first letter of a chemical symbol is always capitalized, as in the preceding examples, and the subsequent letters, if any, are always lower case (small letters). Thus, the symbols for californium and einsteinium are Cf and Es.


General chemical symbols

There are also symbols in chemical equations for groups of chemical elements, for example in comparative formulas. These are often a single capital letter, and the letters are reserved and not used for names of specific elements. For example, an "X" indicates a variable group (usually a
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
) in a class of compounds, while "R" is a Radical (chemistry), radical, meaning a compound structure such as a hydrocarbon chain. The letter "Q" is reserved for "heat" in a chemical reaction. "Y" is also often used as a general chemical symbol, although it is also the symbol of yttrium. "Z" is also frequently used as a general variable group. "E" is used in organic chemistry to denote an Polar effect, electron-withdrawing group or an electrophile; similarly "Nu" denotes a nucleophile. "L" is used to represent a general ligand in inorganic chemistry, inorganic and organometallic chemistry. "M" is also often used in place of a general metal. At least two additional, two-letter generic chemical symbols are also in informal usage, "Ln" for any
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
element and "An" for any
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
element. "Rg" was formerly used for any rare gas element, but the group of rare gases has now been renamed
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemi ...
es and the symbol "Rg" has now been assigned to the element roentgenium.


Isotope symbols

Isotopes are distinguished by the atomic mass number (total protons and neutrons) for a particular isotope of an element, with this number combined with the pertinent element's symbol. IUPAC prefers that isotope symbols be written in superscript notation when practical, for example 12C and 235U. However, other notations, such as carbon-12 and uranium-235, or C-12 and U-235, are also used. As a special case, the three naturally occurring isotopes of the element
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
are often specified as H for 1H (Isotopes of hydrogen#Hydrogen-1 (Protium), protium), D for 2H (
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
), and T for 3H (tritium). This convention is easier to use in chemical equations, replacing the need to write out the mass number for each atom. For example, the formula for heavy water may be written D2O instead of 2H2O.


Origin of the elements

Only about 4% of the total mass of the universe is made of atoms or ions, and thus represented by chemical elements. This fraction is about 15% of the total matter, with the remainder of the matter (85%) being dark matter. The nature of dark matter is unknown, but it is not composed of atoms of chemical elements because it contains no protons, neutrons, or electrons. (The remaining non-matter part of the mass of the universe is composed of the even less well understood dark energy). The 94 naturally occurring chemical elements were produced by at least four classes of astrophysical process. Most of the
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
and a very small quantity of
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
were produced in the first few minutes of the Big Bang. This
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) du ...
happened only once; the other processes are ongoing. Nuclear fusion inside stars produces elements through
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
, including all elements from
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
to iron in atomic number. Elements higher in atomic number than iron, including heavy elements like
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
and
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, are produced by various forms of explosive nucleosynthesis in supernovae and neutron star mergers. The light elements
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
,
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
and boron are produced mostly through
cosmic ray spallation Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly energ ...
(fragmentation induced by cosmic rays) of carbon,
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
. During the early phases of the Big Bang, Big Bang nucleosynthesis, nucleosynthesis of hydrogen nuclei resulted in the production of hydrogen-1 (Isotopes of hydrogen#Hydrogen-1 (Protium), protium, 1H) and helium-4 (4He), as well as a smaller amount of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
(2H) and very minuscule amounts (on the order of 10−10) of lithium and beryllium. Even smaller amounts of boron may have been produced in the Big Bang, since it has been observed in some very old stars, while carbon has not. No elements heavier than boron were produced in the Big Bang. As a result, the primordial abundance of atoms (or ions) consisted of roughly 75% 1H, 25% 4He, and 0.01% deuterium, with only tiny traces of lithium, beryllium, and perhaps boron. Subsequent enrichment of galactic spheroid, galactic halos occurred due to stellar nucleosynthesis and supernova nucleosynthesis. However, the element abundance in intergalactic space can still closely resemble primordial conditions, unless it has been enriched by some means. On Earth (and elsewhere), trace amounts of various elements continue to be produced from other elements as products of nuclear transmutation processes. These include some produced by cosmic rays or other nuclear reactions (see cosmogenic nuclide, cosmogenic and
nucleogenic A nucleogenic isotope, or nuclide, is one that is produced by a natural terrestrial nuclear reaction, other than a reaction beginning with cosmic rays (the latter nuclides by convention are called by the different term cosmogenic). The nuclear react ...
nuclides), and others produced as decay products of long-lived
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s. For example, trace (but detectable) amounts of
carbon-14 Carbon-14, C-14, or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
(14C) are continually produced in the atmosphere by cosmic rays impacting
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
atoms, and argon-40 (40Ar) is continually produced by the decay of primordially occurring but unstable potassium-40 (40K). Also, three primordially occurring but radioactive
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
s,
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high me ...
, uranium, and plutonium, decay through a series of recurrently produced but unstable radioactive elements such as radium and radon, which are transiently present in any sample of these metals or their ores or compounds. Three other radioactive elements,
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
,
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
, and
neptunium Neptunium is a chemical element with the Symbol (chemistry), symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after ...
, occur only incidentally in natural materials, produced as individual atoms by nuclear fission of the Atomic nucleus, nuclei of various heavy elements or in other rare nuclear processes. In addition to the 94 naturally occurring elements, several artificial elements have been produced by human nuclear physics technology. , these experiments have produced all elements up to atomic number 118.


Abundance

The following graph (note log scale) shows the abundance of elements in our
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. The table shows the twelve most common elements in our galaxy (estimated spectroscopically), as measured in Parts-per notation, parts per million, by mass. Nearby galaxies that have evolved along similar lines have a corresponding enrichment of elements heavier than hydrogen and helium. The more distant galaxies are being viewed as they appeared in the past, so their abundances of elements appear closer to the primordial mixture. As physical laws and processes appear common throughout the visible universe, however, scientist expect that these galaxies evolved elements in similar abundance. The abundance of elements in the Solar System is in keeping with their origin from nucleosynthesis in the Big Bang and a number of progenitor supernova stars. Very abundant hydrogen and helium are products of the Big Bang, but the next three elements are rare since they had little time to form in the Big Bang and are not made in stars (they are, however, produced in small quantities by the breakup of heavier elements in interstellar dust, as a result of impact by cosmic rays). Beginning with carbon, elements are produced in stars by buildup from alpha particles (helium nuclei), resulting in an alternatingly larger abundance of elements with even atomic numbers (these are also more stable). In general, such elements up to iron are made in large stars in the process of becoming supernovas. Iron-56 is particularly common, since it is the most stable element that can easily be made from alpha particles (being a product of decay of radioactive nickel-56, ultimately made from 14 helium nuclei). Elements heavier than iron are made in energy-absorbing processes in large stars, and their abundance in the universe (and on Earth) generally decreases with their atomic number. The abundance of the chemical elements on Earth varies from air to crust to ocean, and in various types of life. The abundance of elements in Earth's crust differs from that in the Solar System (as seen in the Sun and heavy planets like Jupiter) mainly in selective loss of the very lightest elements (hydrogen and helium) and also volatile neon, carbon (as hydrocarbons), nitrogen and sulfur, as a result of solar heating in the early formation of the solar system. Oxygen, the most abundant Earth element by mass, is retained on Earth by combination with silicon. Aluminum at 8% by mass is more common in the Earth's crust than in the universe and solar system, but the composition of the far more bulky mantle, which has magnesium and iron in place of aluminum (which occurs there only at 2% of mass) more closely mirrors the elemental composition of the solar system, save for the noted loss of volatile elements to space, and loss of iron which has migrated to the Earth's core. The composition of the human body, by contrast, more closely follows the composition of seawater—save that the human body has additional stores of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
and
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
necessary to form the proteins and nucleic acids, together with phosphorus in the nucleic acids and energy transfer molecule adenosine triphosphate (ATP) that occurs in the cells of all living organisms. Certain kinds of organisms require particular additional elements, for example the magnesium in chlorophyll in green plants, the calcium in mollusc shells, or the iron in the hemoglobin in vertebrate, vertebrate animals' red blood cells.


History


Evolving definitions

The concept of an "element" as an undivisible substance has developed through three major historical phases: Classical definitions (such as those of the ancient Greeks), chemical definitions, and atomic definitions.


Classical definitions

Ancient philosophy posited a set of
classical element Classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had simil ...
s to explain observed patterns in nature. These ''elements'' originally referred to ''Earth (classical element), earth'', ''Water (classical element), water'', ''Air (classical element), air'' and ''Fire (classical element), fire'' rather than the chemical elements of modern science. The term 'elements' (''stoicheia'') was first used by the Greek philosopher Plato in about 360 BCE in his dialogue Timaeus (dialogue), Timaeus, which includes a discussion of the composition of inorganic and organic bodies and is a speculative treatise on chemistry. Plato believed the elements introduced a century earlier by Empedocles were composed of small regular polyhedron, polyhedral Theory of Forms, forms: tetrahedron (fire), octahedron (air), icosahedron (water), and cube (earth). Aristotle, c. 350 BCE, also used the term ''stoicheia'' and added a fifth element called Aether (classical element), aether, which formed the heavens. Aristotle defined an element as:


Chemical definitions

In 1661, Robert Boyle proposed his theory of corpuscularism which favoured the analysis of matter as constituted by irreducible units of matter (atoms) and, choosing to side with neither Aristotle's view of the four elements nor Paracelsus' view of three fundamental elements, left open the question of the number of elements. The first modern list of chemical elements was given in Antoine Lavoisier's 1789 ''Traité Élémentaire de Chimie, Elements of Chemistry'', which contained thirty-three elements, including light and Caloric theory, caloric. By 1818, Jöns Jakob Berzelius had determined atomic weights for forty-five of the forty-nine then-accepted elements.
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February Old_Style_and_New_Style_dates">O.S._27_January.html" ;"title="O ...
had sixty-six elements in his
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
of 1869. From Boyle until the early 20th century, an element was defined as a pure substance that could not be decomposed into any simpler substance. Put another way, a chemical element cannot be transformed into other chemical elements by chemical processes. Elements during this time were generally distinguished by their atomic weights, a property measurable with fair accuracy by available analytical techniques.


Atomic definitions

The 1913 discovery by English physicist Henry Moseley that the nuclear charge is the physical basis for an atom's atomic number, further refined when the nature of protons and neutrons became appreciated, eventually led to the current definition of an element based on atomic number (number of protons per atomic nucleus). The use of atomic numbers, rather than atomic weights, to distinguish elements has greater predictive value (since these numbers are integers), and also resolves some ambiguities in the chemistry-based view due to varying properties of
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s and allotropes within the same element. Currently, IUPAC defines an element to exist if it has isotopes with a lifetime longer than the 10−14 seconds it takes the nucleus to form an electronic cloud. By 1914, seventy-two elements were known, all naturally occurring. The remaining naturally occurring elements were discovered or isolated in subsequent decades, and various additional elements have also been produced synthetically, with much of that work pioneered by Glenn T. Seaborg. In 1955, element 101 was discovered and named mendelevium in honor of D.I. Mendeleev, the first to arrange the elements in a periodic manner.


Discovery and recognition of various elements

Ten materials familiar to various prehistoric cultures are now known to be chemical elements:
Carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
,
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
, iron, lead,
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
,
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
, tin, and zinc. Three additional materials now accepted as elements, arsenic, antimony, and
bismuth Bismuth is a chemical element with the Symbol (chemistry), symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental ...
, were recognized as distinct substances prior to 1500 AD. Phosphorus, cobalt, and platinum were isolated before 1750. Most of the remaining naturally occurring chemical elements were identified and characterized by 1900, including: * Such now-familiar Industry (manufacturing), industrial materials as aluminium, silicon, nickel, chromium, magnesium, and tungsten * Reactive metals such as
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
, sodium, potassium, and calcium * The
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s fluorine, chlorine,
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simila ...
, and iodine * Gases such as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
,
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
,
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
, and neon * Most of the rare-earth elements, including cerium, lanthanum, gadolinium, and neodymium. * The more common radioactive elements, including
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
,
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high me ...
, radium, and radon Elements isolated or produced since 1900 include: * The three remaining undiscovered regularly occurring stable natural elements: hafnium, lutetium, and rhenium * Plutonium, which was first produced synthetically in 1940 by Glenn T. Seaborg, but is now also known from a few long-persisting natural occurrences * The three incidentally occurring natural elements (
neptunium Neptunium is a chemical element with the Symbol (chemistry), symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after ...
,
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
, and
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
), which were all first produced synthetically but later discovered in trace amounts in certain geological samples * Four scarce decay products of uranium or thorium (
astatine Astatine is a chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; ...
,
francium Francium is a chemical element with the symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain it appears in), has a half-life of only 22&nb ...
, actinium, and protactinium), and * Various synthetic transuranic elements, beginning with americium and curium


Recently discovered elements

The first transuranium element (element with atomic number greater than 92) discovered was
neptunium Neptunium is a chemical element with the Symbol (chemistry), symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after ...
in 1940. Since 1999 claims for the discovery of new elements have been considered by the IUPAC/IUPAP Joint Working Party. As of January 2016, all 118 elements have been confirmed as discovered by International Union of Pure and Applied Chemistry, IUPAC. The discovery of element 112 was acknowledged in 2009, and the name ''copernicium'' and the atomic symbol ''Cn'' were suggested for it. The name and symbol were officially endorsed by IUPAC on 19 February 2010. The heaviest element that is believed to have been synthesized to date is element 118,
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
, on 9 October 2006, by the Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions in Dubna, Russia. Tennessine, element 117 was the latest element claimed to be discovered, in 2009. On 28 November 2016, scientists at the IUPAC officially recognized the names for four of the newest chemical elements, with atomic numbers 113, 115, 117, and 118.


List of the 118 known chemical elements

The following sortable table shows the 118 known chemical elements. * Atomic number, Element, and Symbol all serve independently as unique identifiers. * Element names are those accepted by IUPAC. * Block indicates the periodic table Block (periodic table), block for each element: red = s-block, yellow = p-block, blue = d-block, green = f-block. * Group and period refer to an element's position in the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
. Group numbers here show the currently accepted numbering; for older numberings, see Group (periodic table).


See also

* Biological roles of the elements * Chemical database * Discovery of the chemical elements * Element collecting * Fictional element * Goldschmidt classification * Island of stability * List of nuclides * Densities of the elements (data page), List of the elements' densities * Mineral (nutrient) * Periodic Systems of Small Molecules * Prices of chemical elements * Systematic element name * Table of nuclides * Timeline of chemical element discoveries * Roles of chemical elements


References


Further reading

* * * * * * * *: XML on-line corrected version: created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins


External links


Videos for each element
by the University of Nottingham
"Chemical Elements"
''In Our Time'', BBC Radio 4 discussion with Paul Strathern, Mary Archer and John Murrell (chemist), John Murrell (25 May 2000) {{Authority control Chemical elements, Chemistry