Memoize
   HOME
*





Memoize
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing. Although related to caching, memoization refers to a specific case of this optimization, distinguishing it from forms of caching such as buffering or page replacement. In the context of some logic programming languages, memoization is also known as tabling. Etymology The term "memoization" was coined by Donald Michie in 1968 and is derived from the Latin word "memorandum" ("to be remembered"), usually truncated as "memo" in American English, and thus carries the meaning of "turning he results ofa function into something to be remembered". While "memoization" might be confused with "memorization" (becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology and software engineering. The term "computing" is also synonymous with counting and calculating. In earlier times, it was used in reference to the action performed by mechanical computing machines, and before that, to human computers. History The history of computing is longer than the history of computing hardware and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. Computing is intimately tied to the representation of numbers, though mathematical conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lookup Table
In computer science, a lookup table (LUT) is an array that replaces runtime computation with a simpler array indexing operation. The process is termed as "direct addressing" and LUTs differ from hash tables in a way that, to retrieve a value v with key k, a hash table would store the value v in the slot h(k) where h is a hash function i.e. k is used to compute the slot, while in the case of LUT, the value v is stored in slot k, thus directly addressable. The savings in processing time can be significant, because retrieving a value from memory is often faster than carrying out an "expensive" computation or input/output operation. The tables may be precalculated and stored in static program storage, calculated (or "pre-fetched") as part of a program's initialization phase ( memoization), or even stored in hardware in application-specific platforms. Lookup tables are also used extensively to validate input values by matching against a list of valid (or invalid) items in an array and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (computer Science)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book '' Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudocode
In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine reading. It typically omits details that are essential for machine understanding of the algorithm, such as variable declarations and language-specific code. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for people to understand than conventional programming language code, and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications to document algorithms and in planning of software and other algorithms. No broad standard for pseudocode syntax exists, as a program in pseudocode is not an executa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cross-platform
In computing, cross-platform software (also called multi-platform software, platform-agnostic software, or platform-independent software) is computer software that is designed to work in several computing platforms. Some cross-platform software requires a separate build for each platform, but some can be directly run on any platform without special preparation, being written in an interpreted language or compiled to portable bytecode for which the interpreters or run-time packages are common or standard components of all supported platforms. For example, a cross-platform application may run on Microsoft Windows, Linux, and macOS. Cross-platform software may run on many platforms, or as few as two. Some frameworks for cross-platform development are Codename One, Kivy, Qt, Flutter, NativeScript, Xamarin, Phonegap, Ionic, and React Native. Platforms ''Platform'' can refer to the type of processor (CPU) or other hardware on which an operating system (OS) or application runs, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Machine-dependent
Machine-dependent software is software that runs only on a specific computer. Applications that run on multiple computer architectures are called machine-independent, or cross-platform. Many organisations opt for such software because they believe that machine-dependent software is an asset and will attract more buyers. Organizations that want application software to work on heterogeneous computers may port that software to the other machines. Deploying machine-dependent applications on such architectures, such applications require porting. This procedure includes composing, or re-composing, the application's code to suit the target platform. Porting Porting is the process of converting an application from one architecture to another. Software languages such as Java are designed so that applications can migrate across architectures without source code modifications. The term is applied when programming/equipment is changed to make it usable in a different architecture. Code that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compile-time
In computer science, compile time (or compile-time) describes the time window during which a computer program is compiled. The term is used as an adjective to describe concepts related to the context of program compilation, as opposed to concepts related to the context of program execution ( runtime). For example, ''compile-time requirements'' are programming language requirements that must be met by source code before compilation and ''compile-time properties'' are properties of the program that can be reasoned about during compilation. The actual length of time it takes to compile a program is usually referred to as ''compilation time''. Compile time/Early binding vs Run time The determination of execution model have been set during the compile time stage. Run time- the method of execution and allocation - have been set during the run time and are based on the run time dynamicity. Overview Most compilers have at least the following compiler phases (which therefore occur at c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Run Time (program Lifecycle Phase)
In computer science, runtime, run time, or execution time is the final phase of a computer programs life cycle, in which the code is being executed on the computer's central processing unit (CPU) as machine code. In other words, "runtime" is the running phase of a program. A runtime error is detected after or during the execution (running state) of a program, whereas a compile-time error is detected by the compiler before the program is ever executed. Type checking, register allocation, code generation, and code optimization are typically done at compile time, but may be done at runtime depending on the particular language and compiler. Many other runtime errors exist and are handled differently by different programming languages, such as division by zero errors, domain errors, array subscript out of bounds errors, arithmetic underflow errors, several types of underflow and overflow errors, and many other runtime errors generally considered as software bugs which may or may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strength Reduction
In compiler construction, strength reduction is a compiler optimization where expensive operations are replaced with equivalent but less expensive operations. The classic example of strength reduction converts "strong" multiplications inside a loop into "weaker" additions – something that frequently occurs in array addressing. Examples of strength reduction include: * replacing a multiplication within a loop with an addition * replacing an exponentiation within a loop with a multiplication Code analysis Most of a program's execution time is typically spent in a small section of code (called a hot spot), and that code is often inside a loop that is executed over and over. A compiler uses methods to identify loops and recognize the characteristics of register values within those loops. For strength reduction, the compiler is interested in: *Loop invariants: the values which do not change within the body of a loop. *Induction variables: the values which are being iterated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space–time Tradeoff
A space–time trade-off or time–memory trade-off in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, ''space'' refers to the data storage consumed in performing a given task (RAM, HDD, etc), and ''time'' refers to the time consumed in performing a given task ( computation time or response time). The utility of a given space–time tradeoff is affected by related fixed and variable costs (of, e.g., CPU speed, storage space), and is subject to diminishing returns. History Biological usage of time–memory tradeoffs can be seen in the earlier stages of animal behavior. Using stored knowledge or encoding stimuli reactions as "instincts" in the DNA avoids the need for "calculation" in time-critical situations. More specific to computers, look-up tables have been implemented since the very earliest operating systems. In 1980 Martin Hellman first proposed using a time–memory tradeoff for cryptanalysis. Types of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]