HOME
*





Maximum Matching
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible. An important special case of the maximum cardinality matching problem is when is a bipartite graph, whose vertices are partitioned between left vertices in and right vertices in , and edges in always connect a left vertex to a right vertex. In this case, the problem can be efficiently solved with simpler algorithms than in the general case. Algorithms for bipartite graphs Flow-based algorithm The simplest way to compute a maximum cardinality matching is to follow the Ford–Fulkerson algorithm. This algorithm solves the more general problem o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symposium On Foundations Of Computer Science
The IEEE Annual Symposium on Foundations of Computer Science (FOCS) is an academic conference in the field of theoretical computer science. FOCS is sponsored by the IEEE Computer Society. As writes, FOCS and its annual Association for Computing Machinery counterpart STOC (the Symposium on Theory of Computing) are considered the two top conferences in theoretical computer science, considered broadly: they “are forums for some of the best work throughout theory of computing that promote breadth among theory of computing researchers and help to keep the community together.” includes regular attendance at FOCS and STOC as one of several defining characteristics of theoretical computer scientists. Awards The Knuth Prize for outstanding contributions to theoretical computer science is presented alternately at FOCS and STOC. Works of the highest quality presented at the conference are awarded the Best Paper Award. In addition, the Machtey Award is presented to the best student- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Assignment Problem
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: :The problem instance has a number of ''agents'' and a number of ''tasks''. Any agent can be assigned to perform any task, incurring some ''cost'' that may vary depending on the agent-task assignment. It is required to perform as many tasks as possible by assigning at most one agent to each task and at most one task to each agent, in such a way that the ''total cost'' of the assignment is minimized. Alternatively, describing the problem using graph theory: :The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called ''balanced assignment''. Otherwise, it is called ''unbalanced assignment''. If the total cost of the assignment for all tasks is equal to the sum of the costs for each agent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Maximum Weight Matching
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same. Algorithms There is a O(V^E) time algorithm to find a maximum matching or a maximum weight matching in a graph that is not bipartite; it is due to Jack Edmonds, is called the ''paths, trees, and flowers'' method or simply Edmonds' algorithm, and uses bidirected edges. A generalization of the same technique can also be used to find maximum independent set In graph theory, an independent set, stable set, coclique or anticlique is a set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weighted Graph
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Matching
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph , a perfect matching in is a subset of edge set , such that every vertex in the vertex set is adjacent to exactly one edge in . A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs: : In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are unmatched. A perfect matching is also a minimum-size edge cover. If there is a perfect matching, then both the matching number and the edge cover number equal . A perfect matching can only occur when the graph has an even num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dense Graph
In mathematics, a dense graph is a graph in which the number of edges is close to the maximal number of edges (where every pair of vertices is connected by one edge). The opposite, a graph with only a few edges, is a sparse graph. The distinction of what constitutes a dense or sparse graph is ill-defined, and depends on context. The graph density of simple graphs is defined to be the ratio of the number of edges with respect to the maximum possible edges. For undirected simple graphs, the graph density is: :D = \frac = \frac For directed, simple graphs, the maximum possible edges is twice that of undirected graphs (as there are two directions to an edge) so the density is: :D = \frac = \frac where is the number of edges and is the number of vertices in the graph. The maximum number of edges for an undirected graph is = \frac2, so the maximal density is 1 (for complete graphs) and the minimal density is 0 . Upper density ''Upper density'' is an extension of the concept of g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Multiplication
In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices and is denoted as . Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. Computing matrix products is a central operation in all computational applications of linear algebra. Notation This article will use the following notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomized Algorithm
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables. One has to distinguish between algorithms that use the random input so that they always terminate with the correct answer, but where the expected running time is finite (Las Vegas algorithms, for example Quicksort), and algorithms which have a chance of producing an incorrect result (Monte Carlo algorithms, for example the Monte Carlo algorithm for the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. In some cases, probabilistic algorithms are the only practical means of solving a problem. In common practice, randomized algor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Tarjan
Robert Endre Tarjan (born April 30, 1948) is an American computer scientist and mathematician. He is the discoverer of several graph algorithms, including Tarjan's off-line lowest common ancestors algorithm, and co-inventor of both splay trees and Fibonacci heaps. Tarjan is currently the James S. McDonnell Distinguished University Professor of Computer Science at Princeton University, and the Chief Scientist at Intertrust Technologies Corporation. Early life and education He was born in Pomona, California. His father, raised in Hungary, was a child psychiatrist, specializing in mental retardation, and ran a state hospital. As a child, Tarjan read a lot of science fiction, and wanted to be an astronomer. He became interested in mathematics after reading Martin Gardner's mathematical games column in Scientific American. He became seriously interested in math in the eighth grade, thanks to a "very stimulating" teacher. While he was in high school, Tarjan got a job, where he work ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]