Lattice (group Theory)
   HOME
*



picture info

Lattice (group Theory)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices are of inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flow (mathematics)
In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set. The idea of a vector flow, that is, the flow determined by a vector field, occurs in the areas of differential topology, Riemannian geometry and Lie groups. Specific examples of vector flows include the geodesic flow, the Hamiltonian flow, the Ricci flow, the mean curvature flow, and Anosov flows. Flows may also be defined for systems of random variables and stochastic processes, and occur in the study of ergodic dynamical systems. The most celebrated of these is perhaps the Bernoulli flow. Formal definition A flow on a set is a group action of the additive group of real numbers on . More explicitl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory. Preliminaries Let (G, \cdot) be a locally compact Hausdorff topological group. The \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right translates of S by ''g'' as follows: * Left translate: g S = \. * Right translate: S g = \. Left and right translates map Borel sets onto Borel sets. A measure \mu on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Measure
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Formal definition Let X be a locally compact Hausdorff space, and let \mathfrak(X) be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. A Borel measure is any measure \mu defined on the σ-algebra of Borel sets. A few authors require in addition that \mu is locally finite, meaning that \mu(C) 0 and μ(''B''(''x'', ''r'')) ≤ ''rs'' holds for some constant ''s'' > 0 and for every ball ''B''(''x'', ''r'') in ''X'', then the Hausdorff dimension dimHaus(''X'') ≥ ''s''. A partial converse is provided by the Frostman lemma: Lemma: Let ''A'' be a Borel subset of R''n'', and let ''s'' > 0. Then the following are equivalent: *''H''''s''(''A'') > 0, where ''H''''s'' den ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasi-isometry
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov. Definition Suppose that f is a (not necessarily continuous) function from one metric space (M_1,d_1) to a second metric space (M_2,d_2). Then f is called a ''quasi-isometry'' from (M_1,d_1) to (M_2,d_2) if there exist constants A\ge 1, B\ge 0, and C\ge 0 such that the following two properties both hold:P. de la Harpe, ''Topics in geometric group theory''. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. #For every two points x and y in M_1, the distance between their images is up to the addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coarse Geometry
In the mathematical fields of geometry and topology, a coarse structure on a set ''X'' is a collection of subsets of the cartesian product ''X'' × ''X'' with certain properties which allow the ''large-scale structure'' of metric spaces and topological spaces to be defined. The concern of traditional geometry and topology is with the small-scale structure of the space: properties such as the continuity of a function depend on whether the inverse images of small open sets, or neighborhoods, are themselves open. Large-scale properties of a space—such as boundedness, or the degrees of freedom of the space—do not depend on such features. ''Coarse geometry'' and ''coarse topology'' provide tools for measuring the large-scale properties of a space, and just as a metric or a topology contains information on the small-scale structure of a space, a coarse structure contains information on its large-scale properties. Properly, a coarse structure is not the large-scal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radon Measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures. Motivation A common problem is to find a good notion of a measure on a topological space that is compatible with the topology in some sense. One way to do this is to define a measure on the Borel sets of the topological space. In general there are several problems with this: for example, such a measure may not have a well defined support. Another approach to measure theory is to restrict to locally compact Hausdorff spaces, and only consider the measures that correspond to positive linear functionals on the space of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relatively Compact Subset
In mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) of a topological space is a subset whose closure is compact. Properties Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact. In a non-Hausdorff space, such as the particular point topology on an infinite set, the closure of a compact subset is ''not'' necessarily compact; said differently, a compact subset of a non-Hausdorff space is not necessarily relatively compact. Every compact subset of a (possibly non-Hausdorff) topological vector space is complete and relatively compact. In the case of a metric topology, or more generally when sequences may be used to test for compactness, the criterion for relative compactness becomes that any sequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cardinality Of The Continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathbb R, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a''  \mathfrak c . Alternative explanation for 𝔠 = 2ℵ0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finitely Generated Group
In algebra, a finitely generated group is a group ''G'' that has some finite generating set ''S'' so that every element of ''G'' can be written as the combination (under the group operation) of finitely many elements of ''S'' and of inverses of such elements. By definition, every finite group is finitely generated, since ''S'' can be taken to be ''G'' itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated. Examples * Every quotient of a finitely generated group ''G'' is finitely generated; the quotient group is generated by the images of the generators of ''G'' under the canonical projection. * A subgroup of a finitely generated group need not be finitely generated. * A group that is generated by a single element is called cyclic. Every infinite cyclic group is isomorphic to the additive group of the integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]