Largest Empty Sphere
In computational geometry, the largest empty sphere problem is the problem of finding a hypersphere of largest radius in ''d''-dimensional space whose interior does not overlap with any given obstacles. Two dimensions The largest empty circle problem is the problem of finding a circle of largest radius in the plane whose interior does not overlap with any given obstacles. A common special case is as follows. Given ''n'' points in the plane, find a largest circle centered within their convex hull and enclosing none of them. The problem may be solved using Voronoi diagrams in optimal time \Theta(n\, \log\, n).Megan Schuster"The Largest Empty Circle Problem"/ref> See also *Bounding sphere *Farthest-first traversal *Largest empty rectangle In computational geometry, the largest empty rectangle problem, maximal empty rectangle problem or maximum empty rectangle problem, is the problem of finding a rectangle of maximal size to be placed among obstacles in the plane. There are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Espace Octaedrique Cubique Faces Centrees , an Egyptian software company
{{disambig ...
Espace may refer to: *ESPACE, a complexity class in computational complexity theory *Espace musique, a Canadian radio service *Espace 2, a Swiss radio station *Radio Espace, a French radio station *Espace Group, a French media company *Group Espace, a concrete art group *Renault Espace, a multi-purpose-vehicle *eSpace Espace may refer to: * ESPACE, a complexity class in computational complexity theory * Espace musique, a Canadian radio service * Espace 2, a Swiss radio station * Radio Espace, a French radio station *Espace Group, a French media company *Group Es ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plus Grand Cercle Vide Voronoi
Plus may refer to: Mathematics * Addition * +, the mathematical sign Music * ''+'' (Ed Sheeran album), (pronounced "plus"), 2011 * ''Plus'' (Cannonball Adderley Quintet album), 1961 * ''Plus'' (Matt Nathanson EP), 2003 * ''Plus'' (Martin Garrix EP), 2018 * Plus (band), a Japanese pop boy band * ''Plus'' (Autechre album), 2020 Companies * Plus Communication Sh.A, a cellphone company in Albania * Plus (telecommunications Poland), a mobile phone brand * Plus (British TV channel), run by Granada Sky Broadcasting * Plus (Slovak TV channel) * Plus (interbank network), Visa's ATM and debit card network * PLUS Markets, a small stock exchange in London, UK * PLUS Expressway Berhad, concessionaire of the North-South Expressway, Malaysia * PLUS (Dutch supermarket) * Plus (German supermarket) * Plus (autonomous trucking) * Plus Development, a defunct American computer storage manufacturer Other * +, the international call prefix * PLUS Loan, a United States Federal student loan * '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Geometry
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity. Analysis of algorithms, Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(''n''2) and O(''n'' log ''n'') may be the difference between days and seconds of computation. The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (Computer-aided design, CAD/Compu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypersphere
In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, called the ''center''. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit -sphere or simply the -sphere for brevity. In terms of the standard norm, the -sphere is defined as : S^n = \left\ , and an -sphere of radius can be defined as : S^n(r) = \left\ . The dimension of -sphere is , and must not be confused with the dimension of the Euclidean space in which it is naturally embedded. An -sphere is the surface or boundary of an -dimensional ball. In particular: *the pair of points at the ends of a (one-dimensional) line segment is a 0-sphere, *a circle, which i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with r=0 (a single point) is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted. Specifically, a circle is a simple closed curve that divides the plane into two regions: an interior and an exterior. In everyday use, the term "circle" may be used interchangeably to refer to either the boundary of the figure, or to the whole figure including its interior; in strict technical usage, the circle is only the boundary and the whole figure is called a '' disc''. A circle may also be defined as a special ki ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Plane
In mathematics, a plane is a Euclidean (flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional Euclidean geometry. Sometimes the word ''plane'' is used more generally to describe a two-dimensional surface, for example the hyperbolic plane and elliptic plane. When working exclusively in two-dimensional Euclidean space, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional space, often in the plane. Euclidean geometry Euclid set forth the first great landmark of mathematical thought, an axiomat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Voronoi Diagram
In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation. The Voronoi diagram is named after mathematician Georgy Voronoy, and is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or a Dirichlet tessellation (after Peter Gustav Lejeune Dirichlet). Voronoi cells are also known as Thiessen polygons. Voronoi diagrams have practical and theoretical applications in many fields, mainly in science and technology, but also in visual art. The simplest case In the simplest case, shown in the first picture, we are given a finite set of points in the Euclidean p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounding Sphere
In mathematics, given a non-empty set of objects of finite extension in d-dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is an d-dimensional solid sphere containing all of these objects. Used in computer graphics and computational geometry, a bounding sphere is a special type of bounding volume. There are several fast and simple bounding sphere construction algorithms with a high practical value in real-time computer graphics applications. In statistics and operations research, the objects are typically points, and generally the sphere of interest is the minimal bounding sphere, that is, the sphere with minimal radius among all bounding spheres. It may be proven that such a sphere is unique: If there are two of them, then the objects in question lie within their intersection. But an intersection of two non-coinciding spheres of equal radius is contained in a sphere of smaller radius. The problem of computing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Farthest-first Traversal
In computational geometry, the farthest-first traversal of a compact metric space is a sequence of points in the space, where the first point is selected arbitrarily and each successive point is as far as possible from the set of previously-selected points. The same concept can also be applied to a finite set of geometric points, by restricting the selected points to belong to the set or equivalently by considering the finite metric space generated by these points. For a finite metric space or finite set of geometric points, the resulting sequence forms a permutation of the points, also known as the greedy permutation. Every prefix of a farthest-first traversal provides a set of points that is widely spaced and close to all remaining points. More precisely, no other set of equally many points can be spaced more than twice as widely, and no other set of equally many points can be less than half as far to its farthest remaining point. In part because of these properties, farthes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Largest Empty Rectangle
In computational geometry, the largest empty rectangle problem, maximal empty rectangle problem or maximum empty rectangle problem, is the problem of finding a rectangle of maximal size to be placed among obstacles in the plane. There are a number of variants of the problem, depending on the particularities of this generic formulation, in particular, depending on the measure of the "size", domain (type of obstacles), and the orientation of the rectangle. The problems of this kind arise e.g., in electronic design automation, in design and verification of physical layout of integrated circuits. A maximal empty rectangle is a rectangle which is not contained in another empty rectangle. Each side of a maximal empty rectangle abuts an obstacle (otherwise the side may be shifted outwards, increasing the empty rectangle). An application of this kind is enumeration of "maximal white rectangles" in image segmentation R&D of image processing and pattern recognition. In the contexts o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |