
In
mathematics, a plane is a
Euclidean (
flat), two-
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
al
surface
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is t ...
that extends indefinitely. A plane is the two-dimensional analogue of a
point (zero dimensions), a
line
Line most often refers to:
* Line (geometry), object with zero thickness and curvature that stretches to infinity
* Telephone line, a single-user circuit on a telephone communication system
Line, lines, The Line, or LINE may also refer to:
Art ...
(one dimension) and
three-dimensional space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informal ...
. Planes can arise as
subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
. Sometimes the word ''plane'' is used more generally to describe a two-dimensional
surface
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is t ...
, for example the
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
and
elliptic plane.
When working exclusively in two-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics,
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
,
trigonometry
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
,
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, and
graphing are performed in a two-dimensional space, often in the plane.
Euclidean geometry
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
set forth the first great landmark of mathematical thought, an axiomatic treatment of geometry. He selected a small core of undefined terms (called ''common notions'') and postulates (or
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s) which he then used to prove various geometrical statements. Although the plane in its modern sense is not directly given a definition anywhere in the ''
Elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
'', it may be thought of as part of the common notions. Euclid never used numbers to measure length, angle, or area. The Euclidean plane equipped with a chosen
Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
is called a ''Cartesian plane''; a non-Cartesian Euclidean plane equipped with a
polar coordinate system
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to th ...
would be called a ''polar plane''.

A plane is a
ruled surface
In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directri ...
.
Representation
This section is solely concerned with planes embedded in three dimensions: specifically, in
.
Determination by contained points and lines
In a Euclidean space of any number of dimensions, a plane is uniquely determined by any of the following:
* Three non-
collinear
In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
points (points not on a single line).
* A line and a point not on that line.
* Two distinct but intersecting lines.
* Two distinct but
parallel lines.
Properties
The following statements hold in three-dimensional Euclidean space but not in higher dimensions, though they have higher-dimensional analogues:
* Two distinct planes are either parallel or they intersect in a
line
Line most often refers to:
* Line (geometry), object with zero thickness and curvature that stretches to infinity
* Telephone line, a single-user circuit on a telephone communication system
Line, lines, The Line, or LINE may also refer to:
Art ...
.
* A line is either parallel to a plane, intersects it at a single point, or is contained in the plane.
* Two distinct lines
perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to the same plane must be parallel to each other.
* Two distinct planes perpendicular to the same line must be parallel to each other.
Point–normal form and general form of the equation of a plane
In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the
normal vector
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve ...
) to indicate its "inclination".
Specifically, let be the position vector of some point , and let be a nonzero vector. The plane determined by the point and the vector consists of those points , with position vector , such that the vector drawn from to is perpendicular to . Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points such that
The dot here means a
dot (scalar) product.
Expanded this becomes
which is the ''point–normal'' form of the equation of a plane. This is just a
linear equation
In mathematics, a linear equation is an equation that may be put in the form
a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
where
which is the expanded form of
In mathematics it is a common convention to express the normal as a
unit vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat").
The term ''direction ve ...
, but the above argument holds for a normal vector of any non-zero length.
Conversely, it is easily shown that if , , , and are constants and , , and are not all zero, then the graph of the equation
is a plane having the vector as a normal. This familiar equation for a plane is called the ''general form'' of the equation of the plane.
Thus for example a
regression equation of the form (with ) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.
Describing a plane with a point and two vectors lying on it
Alternatively, a plane may be described parametrically as the set of all points of the form

where and range over all real numbers, and are given
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts ...
vectors defining the plane, and is the vector representing the position of an arbitrary (but fixed) point on the plane. The vectors and can be visualized as vectors starting at and pointing in different directions along the plane. The vectors and can be
perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
, but cannot be parallel.
Describing a plane through three points
Let , , and be non-collinear points.
Method 1
The plane passing through , , and can be described as the set of all points (''x'',''y'',''z'') that satisfy the following
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
equations:
Method 2
To describe the plane by an equation of the form
, solve the following system of equations:
This system can be solved using
Cramer's rule
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants ...
and basic matrix manipulations. Let
If is non-zero (so for planes not through the origin) the values for , and can be calculated as follows:
These equations are parametric in ''d''. Setting ''d'' equal to any non-zero number and substituting it into these equations will yield one solution set.
Method 3
This plane can also be described by the "
point and a normal vector" prescription above. A suitable normal vector is given by the
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
and the point can be taken to be any of the given points , or
(or any other point in the plane).
Operations
Distance from a point to a plane
For a plane
and a point
not necessarily lying on the plane, the shortest distance from
to the plane is
:
It follows that
lies in the plane
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
''D'' = 0.
If
, meaning that ''a'', ''b'', and ''c'' are normalized, then the equation becomes
:
Another vector form for the equation of a plane, known as the
Hesse normal form relies on the parameter ''D''. This form is:
[
:
where is a unit normal vector to the plane, a position vector of a point of the plane and ''D''0 the distance of the plane from the origin.
The general formula for higher dimensions can be quickly arrived at using ]vector notation
In mathematics and physics, vector notation is a commonly used notation for representing vectors, which may be Euclidean vectors, or more generally, members of a vector space.
For representing a vector, the common typographic convention is ...
. Let the hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
have equation , where the is a normal vector
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve ...
and is a position vector
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or ...
to a point in the hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
. We desire the perpendicular distance to the point . The hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
may also be represented by the scalar equation , for constants . Likewise, a corresponding may be represented as . We desire the scalar projection
In mathematics, the scalar projection of a vector \mathbf on (or onto) a vector \mathbf, also known as the scalar resolute of \mathbf in the direction of \mathbf, is given by:
:s = \left\, \mathbf\right\, \cos\theta = \mathbf\cdot\mathbf,
wher ...
of the vector in the direction of . Noting that (as satisfies the equation of the hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
) we have
:
Line–plane intersection
In analytic geometry, the intersection of a line
Line most often refers to:
* Line (geometry), object with zero thickness and curvature that stretches to infinity
* Telephone line, a single-user circuit on a telephone communication system
Line, lines, The Line, or LINE may also refer to:
Art ...
and a plane in three-dimensional space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informal ...
can be the empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in oth ...
, a point, or a line.
Line of intersection between two planes
The line of intersection between two planes and where are normalized is given by
:
where
:
:
This is found by noticing that the line must be perpendicular to both plane normals, and so parallel to their cross product (this cross product is zero if and only if the planes are parallel, and are therefore non-intersecting or entirely coincident).
The remainder of the expression is arrived at by finding an arbitrary point on the line. To do so, consider that any point in space may be written as , since is a basis. We wish to find a point which is on both planes (i.e. on their intersection), so insert this equation into each of the equations of the planes to get two simultaneous equations which can be solved for and .
If we further assume that and are orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of un ...
then the closest point on the line of intersection to the origin is . If that is not the case, then a more complex procedure must be used.Plane-Plane Intersection - from Wolfram MathWorld
Mathworld.wolfram.com. Retrieved 2013-08-20.
Dihedral angle
Given two intersecting planes described by
and
, the
dihedral angle
A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
between them is defined to be the angle
between their normal directions:
:
Planes in various areas of mathematics
In addition to its familiar
geometric
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
structure, with
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
s that are
isometries with respect to the usual inner product, the plane may be viewed at various other levels of
abstraction
Abstraction in its main sense is a conceptual process wherein general rules and concepts are derived from the usage and classification of specific examples, literal ("real" or " concrete") signifiers, first principles, or other methods.
"An a ...
. Each level of abstraction corresponds to a specific
category
Category, plural categories, may refer to:
Philosophy and general uses
*Categorization, categories in cognitive science, information science and generally
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce) ...
.
At one extreme, all geometrical and
metric concepts may be dropped to leave the
topological
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
plane, which may be thought of as an idealized
homotopically trivial infinite rubber sheet, which retains a notion of proximity, but has no distances. The topological plane has a concept of a linear path, but no concept of a straight line. The topological plane, or its equivalent the open disc, is the basic topological neighborhood used to construct
surfaces (or 2-manifolds) classified in
low-dimensional topology
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot the ...
. Isomorphisms of the topological plane are all
continuous bijections. The topological plane is the natural context for the branch of
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
that deals with
planar graphs, and results such as the
four color theorem
In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
.
The plane may also be viewed as an
affine space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
, whose isomorphisms are combinations of translations and non-singular linear maps. From this viewpoint there are no distances, but
collinearity and ratios of distances on any line are preserved.
Differential geometry views a plane as a 2-dimensional real
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
, a topological plane which is provided with a
differential structure In mathematics, an ''n''- dimensional differential structure (or differentiable structure) on a set ''M'' makes ''M'' into an ''n''-dimensional differential manifold, which is a topological manifold with some additional structure that allows for ...
. Again in this case, there is no notion of distance, but there is now a concept of smoothness of maps, for example a
differentiable or
smooth path (depending on the type of differential structure applied). The isomorphisms in this case are bijections with the chosen degree of differentiability.
In the opposite direction of abstraction, we may apply a compatible field structure to the geometric plane, giving rise to the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
and the major area of
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebra ...
. The complex field has only two isomorphisms that leave the real line fixed, the identity and
conjugation
Conjugation or conjugate may refer to:
Linguistics
*Grammatical conjugation, the modification of a verb from its basic form
* Emotive conjugation or Russell's conjugation, the use of loaded language
Mathematics
*Complex conjugation, the change ...
.
In the same way as in the real case, the plane may also be viewed as the simplest, one-dimensional (over the complex numbers)
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a ...
, sometimes called the complex line. However, this viewpoint contrasts sharply with the case of the plane as a 2-dimensional real manifold. The isomorphisms are all
conformal
Conformal may refer to:
* Conformal (software), in ASIC Software
* Conformal coating in electronics
* Conformal cooling channel, in injection or blow moulding
* Conformal field theory in physics, such as:
** Boundary conformal field theory ...
bijections of the complex plane, but the only possibilities are maps that correspond to the composition of a multiplication by a complex number and a translation.
In addition, the Euclidean geometry (which has zero
curvature
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.
For curves, the can ...
everywhere) is not the only geometry that the plane may have. The plane may be given a
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
by using the
stereographic projection
In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter th ...
. This can be thought of as placing a sphere on the plane (just like a ball on the floor), removing the top point, and projecting the sphere onto the plane from this point). This is one of the projections that may be used in making a flat map of part of the Earth's surface. The resulting geometry has constant positive curvature.
Alternatively, the plane can also be given a metric which gives it constant negative curvature giving the
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
. The latter possibility finds an application in the theory of
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The law ...
in the simplified case where there are two spatial dimensions and one time dimension. (The hyperbolic plane is a
timelike hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Eucl ...
in three-dimensional
Minkowski space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the ...
.)
Topological and differential geometric notions
The
one-point compactification of the plane is homeomorphic to a
sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
(see
stereographic projection
In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter th ...
); the open disk is homeomorphic to a sphere with the "north pole" missing; adding that point completes the (compact) sphere. The result of this compactification is a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
referred to as the
Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex number ...
or the
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
projective line
In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a ''point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; ...
. The projection from the Euclidean plane to a sphere without a point is a
diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.
Definition
Given tw ...
and even a
conformal map
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.
More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in ...
.
The plane itself is homeomorphic (and diffeomorphic) to an open
disk. For the
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
such diffeomorphism is conformal, but for the Euclidean plane it is not.
See also
*
Face (geometry)
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a '' polyhedron''.
In more technical treatments of the geometry of polyhed ...
*
Flat (geometry)
*
Half-plane
*
Hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
*
Line–plane intersection
*
Plane coordinates
*
Plane of incidence
In describing reflection and refraction in optics, the plane of incidence (also called the incidence plane or the meridional plane) is the plane which contains the surface normal and the propagation vector of the incoming radiation. (In wave o ...
*
Plane of rotation
In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. In three dimensions it is an alternative to the axis of rotation, but unlike the axis of rotation it can be used in other dimensions, such as ...
*
Point on plane closest to origin
*
Polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
*
Projective plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that ...
Notes
References
*
*
External links
*
*
"Easing the Difficulty of Arithmetic and Planar Geometry"is an Arabic manuscript, from the 15th century, that serves as a tutorial about plane geometry and arithmetic.
{{DEFAULTSORT:Plane (Geometry)
Euclidean plane geometry
Mathematical concepts
*