HOME
*





Kinetic Convex Hull
A kinetic convex hull data structure is a kinetic data structure that maintains the convex hull of a set of continuously moving points. It should be distinguished from dynamic convex hull data structures, which handle points undergoing discrete changes such as insertions or deletions of points rather than continuous motion. The 2D case The best known data structure for the 2-dimensional kinetic convex hull problem is by Basch, Guibas, and Hershberger. This data structure is responsive, efficient, compact and local. The data structure The dual of a convex hull of a set of points is the upper and lower envelopes of the dual set of lines. Therefore, maintaining the upper and lower envelopes of a set of moving lines is equivalent to maintaining the convex hull of a set of moving points. Computing upper and lower envelopes are equivalent problems, so computing the upper envelope of a set of lines is equivalent to computing the convex hull of a set of moving points. The upper envelo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kinetic Data Structure
A kinetic data structure is a data structure used to track an attribute of a geometric system that is moving continuously. For example, a kinetic convex hull data structure maintains the convex hull of a group of n moving points. The development of kinetic data structures was motivated by computational geometry problems involving physical objects in continuous motion, such as collision or visibility detection in robotics, animation or computer graphics. Overview Kinetic data structures are used on systems where there is a set of values that are changing as a function of time, in a known fashion. So the system has some values, and for each value v, it is known that v=f(t). Kinetic data structures allow queries on a system at the current virtual time t, and two additional operations: *\textrm(t): Advances the system to time t. *\textrm(v,f(t)): Alters the trajectory of value v to f(t), as of the current time. Additional operations may be supported. For example, kinetic data stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kinetic Convex Hull, Detection Of Intersections
Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and entertainment * Kinetic art, a form of art involving mechanical and/or random movement, including optical illusions. * ''Kinetic'', the 13th episode of the first season of the TV series ''Smallville'' * ''Kinetic'' (comics), a comic by Allan Heinberg and Kelley Pucklett * "Kinetic" (song), a song by Radiohead Companies * Kinetic Engineering Limited, Indian automotive manufacturer * Kinetic Group, Australian-based public transport company Technology * "Kinetic", Seiko's trademark for its automatic quartz technology * The ''Kinetic camera system'' by Birt Acres (1854–1918), photographer and film pioneer * Kinetic projectile Military terminology * Kinetic military action See also * * * Kinetics (other) * Dynamics (disambigu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kinetic Smallest Enclosing Disk
A kinetic smallest enclosing disk data structure is a kinetic data structure that maintains the smallest enclosing disk of a set of moving points. 2D In 2 dimensions, the best known kinetic smallest enclosing disk data structure uses the farthest point delaunay triangulation of the point set to maintain the smallest enclosing disk. The farthest-point Delaunay triangulation is the dual of the farthest-point Voronoi diagram. It is known that if the farthest-point delaunay triangulation of a point set contains an acute triangle, the circumcircle of this triangle is the smallest enclosing disk. Otherwise, the smallest enclosing disk has the diameter of the point set as its diameter. Thus, by maintaining the kinetic diameter of the point set, the farthest-point delaunay triangulation, and whether or not the farthest-point delaunay triangulation has an acute triangle, the smallest enclosing disk can be maintained. This data structure is responsive and compact, but not local or effic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kinetic Minimum Box
Kinetic minimum box is a kinetic data structure to maintain the minimum bounding box of a set of points whose positions change continuously with time. For points moving in a plane, the kinetic convex hull data structure can be used as a basis for a responsive, compact and efficient kinetic minimum box data structure. 2D case The 2D kinetic minimum box builds on the 2D kinetic convex hull in a manner similar to the kinetic width data structure which maintains the pair of minimum-distance parallel lines that have the entire point set between them. In this case, since a box consists of two pairs of parallel lines (that are perpendicular to each other), analogy can be made with running two perpendicular kinetic width problems, and the data-structure needs to maintain sets of four points two antipodal pairs which have perpendicular supporting lines. In the dual view where a point maps to a line , four envelopes (left, right, upper, lower) are computed. The range in x-values of a lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kinetic Width
A kinetic width data structure is a kinetic data structure which maintains the width of a set of moving points. In 2D, the width of a point set is the minimum distance between two parallel lines that contain the point set in the strip between them. For the two dimensional case, the kinetic data structure for kinetic convex hull can be used to construct a kinetic data structure for the width of a point set that is responsive, compact and efficient. 2D case Consider the parallel lines which contain the point set in the strip between them and are of minimal distance apart. One of the lines must contain an edge ab of the convex hull, and the other line must go through a point c of the convex hull such that (a,c) and (b,c) are antipodal pairs. ab and c are referred to as an antipodal edge-vertex pair. Consider the dual of the point set. The points dualize to lines and the convex hull of the points dualizes to the upper and lower envelope of the set of lines. The vertices of the upper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kinetic Diameter (data)
A kinetic diameter data structure is a kinetic data structure which maintains the diameter of a set of moving points. The diameter of a set of moving points is the maximum distance between any pair of points in the set. In the two dimensional case, the kinetic data structure for kinetic convex hull can be used to construct a kinetic data structure for the diameter of a moving point set that is responsive, compact and efficient. 2D Case The pair of points with maximum pairwise distance must be one of the pairs of antipodal points of the convex hull of all of the points. Note that two points are antipodal points if they have parallel supporting lines. In the static case, the diameter of a point set can be found by computing the convex hull of the point set, finding all pairs of antipodal points, and then finding the maximum distance between these pairs. This algorithm can be kinetized as follows: Consider the dual of the point set. The points dualize to lines and the convex hull of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * ''Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents''/Engineering, Computing and Technology Notable articles The articles by Gil Kalai with a proof of a subexponential upper bound on the diameter of a polyhedron and by Samuel Ferguson on the Kepler conjecture, both published in Discrete & Computational geometry, earned their author the Fulkerson Prize The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at e .... References External link ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Master Theorem (analysis Of Algorithms)
In the analysis of algorithms, the master theorem for divide-and-conquer recurrences provides an asymptotic analysis (using Big O notation) for recurrence relations of types that occur in the analysis of many divide and conquer algorithms. The approach was first presented by Jon Bentley, Dorothea Blostein (née Haken), and James B. Saxe in 1980, where it was described as a "unifying method" for solving such recurrences. The name "master theorem" was popularized by the widely used algorithms textbook ''Introduction to Algorithms'' by Cormen, Leiserson, Rivest, and Stein. Not all recurrence relations can be solved with the use of this theorem; its generalizations include the Akra–Bazzi method. Introduction Consider a problem that can be solved using a recursive algorithm such as the following: procedure p(input ''x'' of size ''n''): if ''n'' 1). Crucially, a and b must not depend on n. The theorem below also assumes that, as a base case for the recurrence, T(n)=\Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kinetic Sorted List
A kinetic sorted list is a kinetic data structure for maintaining a list of points under motion in sorted order. It is used as a kinetic predecessor data structure, and as a component in more complex kinetic data structures such as kinetic closest pair. Implementation This data structure maintains a list of the elements in sorted order, with the certificates enforcing the order between adjacent elements. When a certificate fails, the concerned elements are swapped. Then at most three certificates must be updated, the certificate of the swapped pair, and the two certificates involving the swapped elements and the elements of the sorted list which directly precede and follow the swapped pair. For example, given a sorted list , the certificates will be < ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sweep Line Algorithm
In computational geometry, a sweep line algorithm or plane sweep algorithm is an algorithmic paradigm that uses a conceptual ''sweep line'' or ''sweep surface'' to solve various problems in Euclidean space. It is one of the key techniques in computational geometry. The idea behind algorithms of this type is to imagine that a line (often a vertical line) is swept or moved across the plane, stopping at some points. Geometric operations are restricted to geometric objects that either intersect or are in the immediate vicinity of the sweep line whenever it stops, and the complete solution is available once the line has passed over all objects. History This approach may be traced to scanline algorithms of rendering in computer graphics, followed by exploiting this approach in early algorithms of integrated circuit layout design, in which a geometric description of an IC was processed in parallel strips, because the entire description could not fit into memory. Applications Application ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divide And Conquer Algorithm
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform (FFT). Designing efficient divide-and-conquer algorithms can be difficult. As in mathematical induction, it is often necessary to generalize the problem to make it amenable to a recursive solution. The correctness of a divide-and-conquer algorithm is usually proved by mathematical induction, and its computational cost is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]