Interdecile Range
   HOME
*





Interdecile Range
In statistics, the interdecile range is the difference between the first and the ninth deciles (10% and 90%). The interdecile range is a measure of statistical dispersion of the values in a set of data, similar to the range (statistics), range and the interquartile range, and can be computed from the (non-parametric) seven-number summary. Despite its simplicity, the interdecile range of a sample drawn from a normal distribution can be divided by 2.56 to give a reasonably Efficiency (statistics), efficient estimator of the standard deviation of a normal distribution. This is derived from the fact that the lower (respectively upper) decile of a normal distribution with arbitrary variance is equal to the mean minus (respectively, plus) 1.28 times the standard deviation. A more efficient estimator is given by instead taking the 7% trimmed range (the difference between the 7th and 93rd percentiles) and dividing by 3 (corresponding to 86% of the data falling within ±1.5 standard devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decile
In descriptive statistics, a decile is any of the nine values that divide the sorted data into ten equal parts, so that each part represents 1/10 of the sample or population. A decile is one possible form of a quantile; others include the quartile and percentile.. A decile rank arranges the data in order from lowest to highest and is done on a scale of one to ten where each successive number corresponds to an increase of 10 percentage points. Special Usage: The decile mean A moderately robust measure of central tendency - known as the decile mean - can be computed by making use of a sample's deciles D_ to D_ (D_ = 10th percentile, D_ = 20th percentile and so on). It is calculated as follows: : DM = \frac Apart from serving as an alternative for the mean and the truncated mean, it also forms the basis for robust measures of skewness and kurtosis, and even a normality test. See also * Summary statistics * Socio-economic decile In the New Zealand education system, decile is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Dispersion
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a Probability distribution, distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered. Dispersion is contrasted with location or central tendency, and together they are the most used properties of distributions. Measures A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse. Most measures of dispersion have the same units of measurement, units as the quantity being measured. In other words, if the measurements are in metres or seconds, so is the measure of dispersion. Examples of dispersion measures include: * Standard deviat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Range (statistics)
In statistics, the range of a set of data is the difference between the largest and smallest values, the result of subtracting the sample maximum and minimum. It is expressed in the same units as the data. In descriptive statistics, range is the size of the smallest interval which contains all the data and provides an indication of statistical dispersion. Since it only depends on two of the observations, it is most useful in representing the dispersion of small data sets. For continuous IID random variables For ''n'' independent and identically distributed continuous random variables ''X''1, ''X''2, ..., ''X''''n'' with the cumulative distribution function G(''x'') and a probability density function g(''x''), let T denote the range of them, that is, T= max(''X''1, ''X''2, ..., ''X''''n'')- min(''X''1, ''X''2, ..., ''X''''n''). Distribution The range, T, has the cumulative distribution function ::F(t)= n \int_^\infty g(x)(x+t)-G(x) \, \textx. Gumbel notes that the "beauty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interquartile Range
In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data. To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. These quartiles are denoted by Q1 (also called the lower quartile), ''Q''2 (the median), and ''Q''3 (also called the upper quartile). The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = ''Q''3 −  ''Q''1. The IQR is an example of a trimmed estimator, defined as the 25% trimmed range, which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. It is also used as a robust measure of scale It can be clearly visualized by the box on a Box plot. Use Unlike tota ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seven-number Summary
In descriptive statistics, the seven-number summary is a collection of seven summary statistics, and is an extension of the five-number summary. There are three similar, common forms. As with the five-number summary, it can be represented by a modified box plot, adding hatch-marks on the "whiskers" for two of the additional numbers. Seven-number summary The following percentiles are (approximately) evenly spaced under a normally distributed variable: # the 2nd percentile (better: 2.15%) # the 9th percentile (better: 8.87%) # the 25th percentile or lower quartile or ''first quartile'' # the 50th percentile or median (middle value, or ''second quartile'') # the 75th percentile or upper quartile or ''third quartile'' # the 91st percentile (better: 91.13%) # the 98th percentile (better: 97.85%) The middle three values – the lower quartile, median, and upper quartile – are the usual statistics from the five-number summary and are the standard values for the box in a box ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Efficiency (statistics)
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator, needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An ''efficient estimator'' is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense. The relative efficiency of two procedures is the ratio of their efficiencies, although often this concept is used where the comparison is made between a given procedure and a notional "best possible" procedure. The efficiencies and the relative efficiency of two procedures theoretically depend on the sample size available for the given procedure, but it is often possible to use the asymptotic relative efficiency (defined as the limit of the relative efficiencies as the sample size grows) as the principal compariso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values. "Single value" does not necessarily mean "single number", but includes vector valued or function valued estimators. ''Estimation theory'' is concerned with the properties of estimators; that is, with defining properties that can be used to compare different estimators (different rules for creating estimates) for the same quantity, based on the same data. Such properties can be used to determine the best rules to use under given circumstances. However, in robust statistics, statistica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Median
In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic feature of the median in describing data compared to the mean (often simply described as the "average") is that it is not skewed by a small proportion of extremely large or small values, and therefore provides a better representation of a "typical" value. Median income, for example, may be a better way to suggest what a "typical" income is, because income distribution can be very skewed. The median is of central importance in robust statistics, as it is the most resistant statistic, having a breakdown point of 50%: so long as no more than half the data are contaminated, the median is not an arbitrarily large or small result. Finite data set of numbers The median of a finite list of numbers is the "middle" number, when those numbers are list ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Midhinge
In statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. : \operatorname(X) = \overline = \frac = \frac = M_(X) The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. IQR = Q_3 - Q_1), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles. The use of the term "hinge" for the lower or upper quartiles derives from John Tukey's work on exploratory data analysis in the late 1970s,Tukey, J. W. (1977) ''Exploratory Data Analysis'', Addison-Wesley. and "midhinge" is a fairly modern term dating from around that time. The midhinge is slightly simpler to calculate than the trimean (TM), which originated in the same context and equals the average of the median (\tilde = Q_2 = P_) and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trimean
In statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: : TM= \frac This is equivalent to the average of the median and the midhinge: : TM= \frac\left(Q_2 + \frac\right) The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis. Like the median and the midhinge, but unlike the sample mean, it is a statistically resistant L-estimator with a breakdown point of 25%. This beneficial property has been described as follows: Efficiency Despite its simplicity, the trimean is a remarkably efficient estimator of population mean. More precisely, for a large data set (over 100 points) from a symmetric population, the average of the 20th, 50th, and 80th percentile is the most efficient 3 point L-es ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]