Infinite Expression (mathematics)
   HOME
*





Infinite Expression (mathematics)
In mathematics, an infinite expression is an expression in which some operators take an infinite number of arguments, or in which the nesting of the operators continues to an infinite depth. A generic concept for infinite expression can lead to ill-defined or self-inconsistent constructions (much like a set of all sets), but there are several instances of infinite expressions that are well-defined. Examples Examples of well-defined infinite expressions are * infinite sums, such as :: \sum_^\infty a_n = a_0 + a_1 + a_2 + \cdots \, * infinite products, such as :: \prod_^\infty b_n = b_0 \times b_1 \times b_2 \times \cdots * infinite nested radicals, such as :: \sqrt * infinite power towers, such as :: \sqrt^ * infinite continued fractions, such as :: c_0 + \underset \frac = c_0 + \cfrac, : where the left hand side uses Gauss' Kettenbruch notation. In infinitary logic, one can use infinite conjunctions and infinite disjunctions. Even for well-defined infinite e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Omega Language
In formal language theory within theoretical computer science, an infinite word is an infinite-length sequence (specifically, an ω-length sequence) of symbols, and an ω-language is a set of infinite words. Here, ω refers to the first ordinal number, the set of natural numbers. Formal definition Let Σ be a set of symbols (not necessarily finite). Following the standard definition from formal language theory, Σ* is the set of all ''finite'' words over Σ. Every finite word has a length, which is a natural number. Given a word ''w'' of length ''n'', ''w'' can be viewed as a function from the set → Σ, with the value at ''i'' giving the symbol at position ''i''. The infinite words, or ω-words, can likewise be viewed as functions from \mathbb to Σ. The set of all infinite words over Σ is denoted Σω. The set of all finite ''and'' infinite words over Σ is sometimes written Σ∞ or Σ≤ω. Thus an ω-language ''L'' over Σ is a subset of Σω. Operations Some common ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Compositions Of Analytic Functions
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a ''single function'' see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system. Although the title of this article specifies analytic functions, there are results for more general functions of a complex variable as well. Notation There are several notations describing infinite compositions, includi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a constant. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, ''c'' (the ''center'' of the series) is equal to zero, for instance when considering a Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. Beyond their role in mathematical analysis, power series also occur in combinatorics as generating functions (a kind of formal power series) and in electronic engineering (under the name of the Z-transform). The familiar decimal notation for real numbers can also be viewed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decimal Expansion
A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\ldots b_0.a_1a_2\ldots Here is the decimal separator, is a nonnegative integer, and b_0, \ldots, b_k, a_1, a_2,\ldots are ''digits'', which are symbols representing integers in the range 0, ..., 9. Commonly, b_k\neq 0 if k > 1. The sequence of the a_i—the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0. If all a_i are , the separator is also omitted, resulting in a finite sequence of digits, which represents a natural number. The decimal representation represents the infinite sum: r=\sum_^k b_i 10^i + \sum_^\infty \frac. Every nonnegative real number has at least one such representation; it has two such representations (with b_k\neq 0 if k>0) if and only if one has a trailing infinite sequence of , and the other has a trailing infini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinite Word
In formal language theory within theoretical computer science, an infinite word is an infinite-length sequence (specifically, an ω-length sequence) of symbols, and an ω-language is a set of infinite words. Here, ω refers to the first ordinal number, the set of natural numbers. Formal definition Let Σ be a set of symbols (not necessarily finite). Following the standard definition from formal language theory, Σ* is the set of all ''finite'' words over Σ. Every finite word has a length, which is a natural number. Given a word ''w'' of length ''n'', ''w'' can be viewed as a function from the set → Σ, with the value at ''i'' giving the symbol at position ''i''. The infinite words, or ω-words, can likewise be viewed as functions from \mathbb to Σ. The set of all infinite words over Σ is denoted Σω. The set of all finite ''and'' infinite words over Σ is sometimes written Σ∞ or Σ≤ω. Thus an ω-language ''L'' over Σ is a subset of Σω. Operations Some common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterated Binary Operation
In mathematics, an iterated binary operation is an extension of a binary operation on a set ''S'' to a function on finite sequences of elements of ''S'' through repeated application. Common examples include the extension of the addition operation to the summation operation, and the extension of the multiplication operation to the product operation. Other operations, e.g., the set-theoretic operations union and intersection, are also often iterated, but the iterations are not given separate names. In print, summation and product are represented by special symbols; but other iterated operators often are denoted by larger variants of the symbol for the ordinary binary operator. Thus, the iterations of the four operations mentioned above are denoted :\sum,\ \prod,\ \bigcup, and \bigcap, respectively. More generally, iteration of a binary function is generally denoted by a slash: iteration of f over the sequence (a_, a_ \ldots, a_) is denoted by f / (a_, a_ \ldots, a_), following t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Part
In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal x, the unique real x_0 infinitely close to it, i.e. x-x_0 is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat,Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science.Searxiv The authors refer to the Fermat-Robinson standard part. as well as Leibniz's Transcendental law of homogeneity. The standard part function was first defined by Abraham Robinson who used the notation ^x for the standard part of a hyperreal x (see Robinson 1974). This concept plays a key role in defining the concepts of the calculus, such as continuity, the derivati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypernatural
In nonstandard analysis, a hyperinteger ''n'' is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence in the ultrapower construction of the hyperreals. Discussion The standard integer part function: :\lfloor x \rfloor is defined for all real ''x'' and equals the greatest integer not exceeding ''x''. By the transfer principle of nonstandard analysis, there exists a natural extension: :^*\! \lfloor \,\cdot\, \rfloor defined for all hyperreal ''x'', and we say that ''x'' is a hyperinteger if x = ^*\! \lfloor x \rfloor. Thus the hyperintegers are the image of the integer part function on the hyperreals. Internal sets The set ^*\mathbb of all hyperintegers is an internal subset of the hyperreal line ^*\mathbb. The set of all finite hyperintegers (i.e. \mathbb itself) is not an internal subset. Eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperreal Number
In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form :1 + 1 + \cdots + 1 (for any finite number of terms). Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyper-real" was introduced by Edwin Hewitt in 1948. The hyperreal numbers satisfy the transfer principle, a rigorous version of Leibniz's heuristic law of continuity. The transfer principle states that true first-order statements about R are also valid in *R. For example, the commutative law of addition, , holds for the hyperreals just as it does for the reals; since R is a real closed field, so is *R. Since \sin()=0 for all integers ''n'', one also has \sin()=0 for all hyperintegers H. The transfer principle for ultrapowers is a consequence of Łoś' theorem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]