Induced Character
   HOME
*





Induced Character
In mathematics, an induced character is the character of the representation ''V'' of a finite group ''G'' induced from a representation ''W'' of a subgroup ''H'' ≤ ''G''. More generally, there is also a notion of induction \operatorname(f) of a class function ''f'' on ''H'' given by the formula :\operatorname(f)(s) = \frac \sum_ f(t^ st). If ''f'' is a character of the representation ''W'' of ''H'', then this formula for \operatorname(f) calculates the character of the induced representation ''V'' of ''G''.. Translated from the second French edition by Leonard L. Scott. The basic result on induced characters is Brauer's theorem on induced characters Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group. Backgrou .... It states that every irreducible character on ''G'' is a linear combination w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character (mathematics)
In mathematics, a character is (most commonly) a special kind of function from a group to a field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified. Multiplicative character A multiplicative character (or linear character, or simply character) on a group ''G'' is a group homomorphism from ''G'' to the multiplicative group of a field , usually the field of complex numbers. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an abelian group under pointwise multiplication. This group is referred to as the character group of ''G''. Sometimes only ''unitary'' characters are considered (thus the image is in the unit circle); other such homomorphisms are then called ''quasi-characters''. Dirichlet characters can be seen as a special case of this definition. Multiplicative characters are linearly independent, i.e. if \chi_1,\chi_2, \ldots , \chi_n are different cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Induced Representation
In group theory, the induced representation is a representation of a group, , which is constructed using a known representation of a subgroup . Given a representation of '','' the induced representation is, in a sense, the "most general" representation of that extends the given one. Since it is often easier to find representations of the smaller group than of '','' the operation of forming induced representations is an important tool to construct new representations''.'' Induced representations were initially defined by Frobenius, for linear representations of finite groups. The idea is by no means limited to the case of finite groups, but the theory in that case is particularly well-behaved. Constructions Algebraic Let be a finite group and any subgroup of . Furthermore let be a representation of . Let be the index of in and let be a full set of representatives in of the left cosets in . The induced representation can be thought of as acting on the following spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Induction Of A Class Function
Induction, Inducible or Inductive may refer to: Biology and medicine * Labor induction (birth/pregnancy) * Induction chemotherapy, in medicine * Induced stem cells, stem cells derived from somatic, reproductive, pluripotent or other cell types by deliberate epigenetic reprogramming * Cellular differentiation, the process where a cell changes from one cell type to another * Enzyme induction and inhibition, a process in which a molecule induces the expression of an enzyme * Morphogenesis, the biological process that causes an organism to develop its shape * Regulation of gene expression, the means by which a gene product is either induced or inhibited Chemistry * Induction period, the time interval between cause and measurable effect * Inductive cleavage, in organic chemistry * Inductive effect, the redistribution of electron density through molecular sigma bonds * Asymmetric induction, the formation of one specific stereoisomer in the presence of a nearby chiral center Com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Function
In mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group ''G'' that is constant on the conjugacy classes of ''G''. In other words, it is invariant under the conjugation map on ''G''. Such functions play a basic role in representation theory. Characters The character of a linear representation of ''G'' over a field ''K'' is always a class function with values in ''K''. The class functions form the center of the group ring ''K'' 'G'' Here a class function ''f'' is identified with the element \sum_ f(g) g. Inner products The set of class functions of a group ''G'' with values in a field ''K'' form a ''K''-vector space. If ''G'' is finite and the characteristic of the field does not divide the order of ''G'', then there is an inner product defined on this space defined by \langle \phi , \psi \rangle = \frac \sum_ \phi(g) \psi(g^) where , ''G'', denotes the order of ''G''. The set of irred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer's Theorem On Induced Characters
Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group. Background A precursor to Brauer's induction theorem was Artin's induction theorem, which states that , ''G'', times the trivial character of ''G'' is an integer combination of characters which are each induced from trivial characters of cyclic subgroups of ''G.'' Brauer's theorem removes the factor , ''G'', , but at the expense of expanding the collection of subgroups used. Some years after the proof of Brauer's theorem appeared, J.A. Green showed (in 1955) that no such induction theorem (with integer combinations of characters induced from linear characters) could be proved with a collection of subgroups smaller than the Brauer elementary subgroups. Another result between Artin's induction theorem and Brauer's induction theorem, also due to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elementary Group
In algebra, more specifically group theory, a ''p''-elementary group is a direct product of a finite cyclic group of order relatively prime to ''p'' and a ''p''-group. A finite group is an elementary group if it is ''p''-elementary for some prime number ''p''. An elementary group is nilpotent. Brauer's theorem on induced characters states that a character on a finite group is a linear combination with integer coefficients of characters induced from elementary subgroups. More generally, a finite group ''G'' is called a ''p''-hyperelementary if it has the extension :1 \longrightarrow C \longrightarrow G \longrightarrow P \longrightarrow 1 where C is cyclic of order prime to ''p'' and ''P'' is a ''p''-group. Not every hyperelementary group is elementary: for instance the non-abelian group of order 6 is 2-hyperelementary, but not 2-elementary. See also * Elementary abelian group In mathematics, specifically in group theory, an elementary abelian group (or elementary abelian ''p'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]