Icosahedral Bipyramid
   HOME
*



picture info

Icosahedral Bipyramid
In 4-dimensional geometry, the icosahedral bipyramid is the direct sum of a icosahedron and a segment, + . Each face of a central icosahedron is attached with two tetrahedra, creating 40 tetrahedral cells, 80 triangular faces, 54 edges, and 14 vertices.https://www.bendwavy.org/klitzing/incmats/ikedpy.htm An icosahedral bipyramid can be seen as two icosahedral pyramids augmented together at their bases. It is the dual of a dodecahedral prism, Coxeter-Dynkin diagram , so the bipyramid can be described as . Both have Coxeter notation symmetry ,3,5 order 240. Having all regular cells (tetrahedra), it is a Blind polytope. See also * Pentagonal bipyramid - A lower dimensional analogy * Tetrahedral bipyramid * ''Octahedral bipyramid'' - A lower symmetry form of the as 16-cell. * Cubic bipyramid * Dodecahedral bipyramid In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, + . Each face of a central dodecahedron is attached with tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Icosahedral Bipyramid-ortho
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the (convex, non-stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles. Regular icosahedra There are two objects, one convex and one nonconvex, that can both be called regular icosahedra. Each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a ''great icosahedron''. Convex regular icosahedron The convex regular icosahedron is usually referred to simply as the ''regular icosahedron'', one of the five regular Platonic solids, and is represented by its Schläfli symbol , cont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, we define the sum (a, b) + (c, d) to be (a + c, b + d); in other words addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Bipyramid
In 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, + . Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base. It is the dual of a octahedral prism. Being convex and regular-faced, it is a CRF polytope. Coordinates It is a Hanner polytope with coordinates: * (0, 0, 0; ±1) * (±1, ±1, ±1; 0) See also * Tetrahedral bipyramid * Dodecahedral bipyramid In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, + . Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles trian ... * Icosahedral bipyramid References External links Cubic tegum 4-polytopes {{Polychora-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

16-cell
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid .Matila Ghyka, ''The Geometry of Art and Life'' (1977), p.68 It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes'', and is analogous to the octahedron in three dimensions. It is Coxeter's \beta_4 polytope. Conway's name for a cross-polytope is orthoplex, for ''orthant complex''. The dual polytope is the tesseract (4-cube), which it can be combined with to form a compound figure. The 16-cell has 16 cells as the tesseract has 16 vertices. Geometry The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). Each of its 4 successor convex regular 4-polytopes can be constructed as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Bipyramid
In 4-dimensional geometry, the tetrahedral bipyramid is the direct sum of a tetrahedron and a segment, + . Each face of a central tetrahedron is attached with two tetrahedra, creating 8 tetrahedral cells, 16 triangular faces, 14 edges, and 6 vertices,.https://www.bendwavy.org/klitzing/incmats/tedpy.htm A tetrahedral bipyramid can be seen as two tetrahedral pyramids augmented together at their base. It is the dual of a tetrahedral prism, , so it can also be given a Coxeter-Dynkin diagram, , and both have Coxeter notation symmetry ,3,3 order 48. Being convex with all regular cells (tetrahedra) means that it is a Blind polytope. This bipyramid exists as the cells of the dual of the uniform rectified 5-simplex, and rectified 5-cube or the dual of any uniform 5-polytope with a tetrahedral prism vertex figure. And, as well, it exists as the cells of the dual to the rectified 24-cell honeycomb. See also * Triangular bipyramid - A lower dimensional analogy of the tetrahedral bipyra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagonal Bipyramid
In geometry, the pentagonal bipyramid (or dipyramid) is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid (). Each bipyramid is the dual of a uniform prism. Although it is face-transitive, it is not a Platonic solid because some vertices have four faces meeting and others have five faces. Properties If the faces are equilateral triangles, it is a deltahedron and a Johnson solid (''J''13). It can be seen as two pentagonal pyramids (''J''2) connected by their bases. : The pentagonal dipyramid is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices. It is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size. The other three polyhedra with this property are the regular octahedron, the snub disphenoid, and an irregular polyhedron with 12 vertices and 20 triangular faces.. Formulae The following f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. Reflectional groups For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the bracket notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors. The Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the ''A''''n'' group is represented by ''n''−1 to imply ''n'' nodes connected by ''n−1'' order-3 branches. Exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecahedral Prism
In geometry, a dodecahedral prism is a convex uniform 4-polytope. This 4-polytope has 14 polyhedral cells: 2 dodecahedra connected by 12 pentagonal prisms. It has 54 faces: 30 squares and 24 pentagons. It has 80 edges and 40 vertices. It can be constructed by creating two coinciding dodecahedra in 3-space, and translating each copy in opposite perpendicular directions in 4-space until their separation equals their edge length. It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of parallel Platonic solids or Archimedean solids. Alternative names # Dodecahedral dyadic prism Norman W. Johnson # Dodecahedral hyperprism Images File:Hyperprisme dodécaèdre.gif File:Dodecahedral hyperprism Schlegel.png , Transparent Schlegel diagram File:Dodecahedral hyperprism.png , An orthographic projection with a wireframe model and has half of the pentagonal faces colored to show the two dodecahedra. The dodecahedra are regular, but look fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Icosahedral Pyramid
The icosahedral pyramid is a four-dimensional convex polytope, bounded by one icosahedron as its base and by 20 triangular pyramid cells which meet at its apex. Since an icosahedron's circumradius is less than its edge length,, circumradius sqrt 5+sqrt(5))/8 = 0.951057 the tetrahedral pyramids can be made with regular faces. Having all regular cells, it is a Blind polytope. Two copies can be augmented to make an icosahedral bipyramid which is also a Blind Polytope. The regular 600-cell has icosahedral pyramids around every vertex. The dual to the icosahedral pyramid is the dodecahedral pyramid, seen as a dodecahedron, dodecahedral base, and 12 regular pentagonal pyramid In geometry, a pentagonal pyramid is a pyramid with a pentagonal base upon which are erected five triangular faces that meet at a point (the apex). Like any pyramid, it is self- dual. The ''regular'' pentagonal pyramid has a base that is a regu ...s meeting at an apex. : References External links * * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schläfli Symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more than three dimensions and discovered all their convex regular polytopes, including the six that occur in four dimensions. Definition The Schläfli symbol is a recursive description, starting with for a ''p''-sided regular polygon that is convex. For example, is an equilateral triangle, is a square, a convex regular pentagon, etc. Regular star polygons are not convex, and their Schläfli symbols contain irreducible fractions ''p''/''q'', where ''p'' is the number of vertices, and ''q'' is their turning number. Equivalently, is created from the vertices of , connected every ''q''. For example, is a pentagram; is a pentagon. A regular polyhedron that has ''q'' regular ''p''-sided Face (geometry), polygon faces around each Verte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Blind Polytope
In geometry, a Blind polytope is a convex polytope composed of regular polytope facets. The category was named after the German couple Gerd and Roswitha Blind, who described them in a series of papers beginning in 1979. It generalizes the set of semiregular polyhedra and Johnson solids to higher dimensions. Uniform cases The set of convex uniform 4-polytopes (also called semiregular 4-polytopes) are completely known cases, nearly all grouped by their Wythoff constructions, sharing symmetries of the convex regular 4-polytopes and prismatic forms. Set of convex uniform 5-polytopes, uniform 6-polytopes, uniform 7-polytopes, etc are largely enumerated as Wythoff constructions, but not known to be complete. Other cases Pyramidal forms: (4D) # (''Tetrahedral pyramid'', ( ) ∨ , a tetrahedron base, and 4 tetrahedral sides, a lower symmetry name of regular 5-cell.) # Octahedral pyramid, ( ) ∨ , an octahedron base, and 8 tetrahedra sides meeting at an apex. # Icosahedral p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]