I2O6
   HOME
*





I2O6
Diiodine hexaoxide, is a chemical compound of oxygen and iodine with the chemical formula I2O6. It belongs to the class of iodine oxides, and is a mixed oxide, consisting of iodine(V) and iodine(VII) oxidation states. Synthesis Reaction of periodic acid with iodic acid in sulfuric acid: : The thermal decomposition of ''meta''-periodic acid in vacuum also leads to the formation of diiodine hexoxide. Chemical properties Below 100 °C, diiodine hexaoxide can be stored stably in the absence of moisture. When dissolved in water, an exothermic reaction to form iodine and periodic acid takes place. When heated above 150 °C, decomposition into diiodine pentoxide can be observed: : The compound is diamagnetic, which is attributed to the different oxidation numbers of the iodine atoms. Structurally, the compound is iodyl periodate, an iodine(V,VII) oxide approximating IO2+IO4−. As a solid, the compound crystallizes in the space group ''P''1 (space group no. 2) with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is Earth's most abundant element, and after hydrogen and helium, it is the third-most abundant element in the universe. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula . Diatomic oxygen gas currently constitutes 20.95% of the Earth's atmosphere, though this has changed considerably over long periods of time. Oxygen makes up almost half of the Earth's crust in the form of oxides.Atkins, P.; Jones, L.; Laverman, L. (2016).''Chemical Principles'', 7th edition. Freeman. Many major classes of organic molecules in living organisms contain oxygen atoms, such as proteins, nucleic acids, carbohydrates, and fats, as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iodine
Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a violet gas at . The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek 'violet-coloured'. Iodine occurs in many oxidation states, including iodide (I−), iodate (), and the various periodate anions. It is the least abundant of the stable halogens, being the sixty-first most abundant element. As the heaviest essential mineral nutrient, iodine is required for the synthesis of thyroid hormones. Iodine deficiency affects about two billion people and is the leading preventable cause of intellectual disabilities. The dominant producers of iodine today are Chile and Japan. Due to its high atomic number and ease of attachment to organic compound ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iodine Oxide
Iodine oxides are chemical compounds of oxygen and iodine. Iodine has only two stable oxides which are isolatable in bulk, iodine tetroxide and iodine pentoxide, but a number of other oxides are formed in trace quantities or have been hypothesized to exist. The chemistry of these compounds is complicated with only a few having been well characterized. Many have been detected in the atmosphere and are believed to be particularly important in the marine boundary layer. Diiodine monoxide has largely been the subject of theoretical study, but there is some evidence that it may be prepared in a similar manner to dichlorine monoxide, via a reaction between HgO and I2. The compound appears to be highly unstable but can react with alkenes to give halogenated products. Radical iodine oxide (IO), iodine dioxide (IO2) and iodine tetroxide ((IO2)2) all possess significant and interconnected atmospheric chemistry. They are formed, in very small quantities, at the marine boundary layer by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mixed Oxide
In chemistry, a mixed oxide is a somewhat informal name for an oxide that contains cations of more than one chemical element or cations of a single element in several states of oxidation.Advanced Inorganic Chemistry, F. A. Cotton, G. Wilkinson, Interscience, 2d Edition, 1966 The term is usually applied to solid ionic compounds that contain the oxide anion and two or more element cations. Typical examples are ilmenite (), a mixed oxide of iron () and titanium () cations, perovskite and garnet.The cations may be the same element in different ionization states: a notable example is magnetite , which is also known as ferrosoferric oxide , contains the cations Fe(2+) ("ferrous" iron) and ("ferric" iron) in 1:2 ratio. Other notable examples include red lead , the ferrites,Alex Goldman (1990), ''Modern ferrite technology'' and the yttrium aluminum garnet ,K. Byrappa, Masahiro Yoshimura (2001), ''Handbook of hydrothermal technology''. William Andrew. 870 pages. used in lasers. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxidation State
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge. The oxidation state of an atom does not represent the "real" formal charge on that atom, or any other actual atomic property. This is particularly true of high oxidation states, where the ionization energy required to produce a multiply positive ion is far greater than the energies available in chemical reactions. Additionally, the oxidation states of atoms in a given compound may vary depending on the choice of electronegativity scale used in their calculation. Thus, the oxidation state of an atom in a compound is purely a formalism. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Periodic Acid
Periodic acid ( ) is the highest oxoacid of iodine, in which the iodine exists in oxidation state +7. Like all periodates it can exist in two forms: orthoperiodic acid, with the chemical formula , and metaperiodic acid, which has the formula . Periodic acid was discovered by Heinrich Gustav Magnus and C. F. Ammermüller in 1833. Synthesis Modern industrial scale production involves the oxidation of a solution of sodium iodate under alkaline conditions, either electrochemically on a anode, or by treatment with chlorine: : (counter ions omitted for clarity) ''E''° = -1.6 V : Orthoperiodic acid can be dehydrated to give metaperiodic acid by heating to 100 °C under reduced pressure. : Further heating to around 150 °C gives iodine pentoxide () rather than the expected anhydride ''diiodine heptoxide'' (). Metaperiodic acid can also be prepared from various orthoperiodates by treatment with dilute nitric acid. Properties Orthoperiodic acid has a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iodic Acid
Iodic acid is a white water-soluble solid with the chemical formula . Its robustness contrasts with the instability of chloric acid and bromic acid. Iodic acid features iodine in the oxidation state +5 and is one of the most stable oxo-acids of the halogens. When heated, samples dehydrate to give iodine pentoxide. On further heating, the iodine pentoxide further decomposes, giving a mix of iodine, oxygen and lower oxides of iodine. Preparation Iodic acid can be produced by oxidizing iodine with strong oxidizers such as nitric acid , chlorine , chloric acid or hydrogen peroxide , for example: :I2 + 6 H2O + 5Cl2 2 HIO3 + 10 HCl Structure Iodic acid crystallises from acidic solution as orthorhombic α- in space group ''P''212121. The structure consists of pyramidal molecules linked by hydrogen bonding and intermolecular iodine-oxygen interactions. The I=O bond lengths are 1.81 Å while the I–OH distance is 1.89 Å. Several other polymorphs have been reported, including an or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sulfuric Acid
Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formula . It is a colorless, odorless and viscous liquid that is miscible with water. Pure sulfuric acid does not exist naturally on Earth due to its strong affinity to water vapor; it is hygroscopic and readily absorbs water vapor from the air. Concentrated sulfuric acid is highly corrosive towards other materials, from rocks to metals, since it is an oxidant with powerful dehydrating properties. Phosphorus pentoxide is a notable exception in that it is not dehydrated by sulfuric acid, but to the contrary dehydrates sulfuric acid to sulfur trioxide. Upon addition of sulfuric acid to water, a considerable amount of heat is released; thus the reverse procedure of adding water to the acid should not be performed since the heat released may boi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diiodine Tetroxide
Diiodine tetraoxide, I2O4, is a chemical compound of oxygen and iodine. It belongs to the class of iodine oxides, and is a mixed oxide, consisting of iodine(III) and iodine(V) oxidation states. Synthesis The oxide is formed by the reaction of hot concentrated sulfuric acid on iodic acid for several days. : It is formed from diiodine pentoxide and iodine in concentrated sulfuric acid or iodosyl sulfate (IO)2SO4 added to water: : Physical properties Diiodine tetraoxide is a yellow, granular powder. At temperatures above 85 °C it decomposes to diiodine pentoxide Iodine pentoxide is the chemical compound with the Chemical formula, formula I2O5. This iodine oxide is the acid anhydride, anhydride of iodic acid, and the only stable oxide of iodine. It is produced by dehydrating iodic acid at 200 °C in ... and iodine: : This process is even faster at 135 °C. It dissolves in hot water to form iodate and iodide. Structurally, the compound is an iodyl iodite O2I-OIO ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orthoperiodic Acid
Periodic acid ( ) is the highest oxoacid of iodine, in which the iodine exists in oxidation state +7. Like all periodates it can exist in two forms: orthoperiodic acid, with the chemical formula , and metaperiodic acid, which has the formula . Periodic acid was discovered by Heinrich Gustav Magnus and C. F. Ammermüller in 1833. Synthesis Modern industrial scale production involves the oxidation of a solution of sodium iodate under alkaline conditions, either electrochemically on a anode, or by treatment with chlorine: : (counter ions omitted for clarity) ''E''° = -1.6 V : Orthoperiodic acid can be dehydrated to give metaperiodic acid by heating to 100 °C under reduced pressure. : Further heating to around 150 °C gives iodine pentoxide () rather than the expected anhydride ''diiodine heptoxide'' (). Metaperiodic acid can also be prepared from various orthoperiodates by treatment with dilute nitric acid. Properties Orthoperiodic acid has a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iodine Pentoxide
Iodine pentoxide is the chemical compound with the formula I2O5. This iodine oxide is the anhydride of iodic acid, and the only stable oxide of iodine. It is produced by dehydrating iodic acid at 200 °C in a stream of dry air: :2HIO3 → I2O5 + H2O Structure I2O5 is bent with an I–O–I angle of 139.2°, but the molecule has no mirror plane so its symmetry is C2 rather than C2v. The terminal I–O distances are around 1.80 Å and the bridging I–O distances are around 1.95 Å. Reactions Iodine pentoxide easily oxidises carbon monoxide to carbon dioxide at room temperature: :5 CO + I2O5 → I2 + 5 CO2 This reaction can be used to analyze the concentration of CO in a gaseous sample. I2O5 forms iodyl salts, O2+ with SO3 and S2O6F2, but iodosyl salts, O+ with concentrated sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iodine Oxide
Iodine oxides are chemical compounds of oxygen and iodine. Iodine has only two stable oxides which are isolatable in bulk, iodine tetroxide and iodine pentoxide, but a number of other oxides are formed in trace quantities or have been hypothesized to exist. The chemistry of these compounds is complicated with only a few having been well characterized. Many have been detected in the atmosphere and are believed to be particularly important in the marine boundary layer. Diiodine monoxide has largely been the subject of theoretical study, but there is some evidence that it may be prepared in a similar manner to dichlorine monoxide, via a reaction between HgO and I2. The compound appears to be highly unstable but can react with alkenes to give halogenated products. Radical iodine oxide (IO), iodine dioxide (IO2) and iodine tetroxide ((IO2)2) all possess significant and interconnected atmospheric chemistry. They are formed, in very small quantities, at the marine boundary layer by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]