Interval Contractor
In mathematics, an interval contractor (or contractor for short) associated to a set X is an operator C which associates to a hyperrectangle /math> in \bold^n another box C( of \bold^n such that the two following properties are always satisfied: * C( \subset /math> (contractance property) * C( \cap X = \cap X (completeness property) A ''contractor associated to a constraint'' (such as an equation or an inequality) is a contractor associated to the set X of all x which satisfy the constraint. Contractors make it possible to improve the efficiency of branch-and-bound algorithms classically used in interval analysis. Properties of contractors A contractor ''C'' is monotonic if we have \subset \Rightarrow C( \subset C( . It is ''minimal'' if for all boxes 'x'' we have C( = xcap X], where 'A''is the ''interval hull'' of the set ''A'', i.e., the smallest box enclosing ''A''. The contractor ''C'' is ''thin'' if for all points ''x'', C(\) = \\cap X where denotes t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperrectangle
In geometry, an orthotopeCoxeter, 1973 (also called a hyperrectangle or a box) is the generalization of a rectangle to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of intervals. If all of the edges are equal length, it is a hypercube. A hyperrectangle is a special case of a parallelotope. Types A three-dimensional orthotope is also called a right rectangular prism, rectangular cuboid, or rectangular parallelepiped. The special case of an ''n''-dimensional orthotope where all edges have equal length is the ''n''-cube. By analogy, the term "hyperrectangle" or "box" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.See e.g. . Dual polytope The dual polytope of an ''n''-orthotope has been variously called a rectangular n-orthoplex, rhombic ''n''-fusil, or ''n''-lozenge. It is constructed by 2''n'' points loca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constraint Algorithm
In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The general steps involved are: (i) choose novel unconstrained coordinates (internal coordinates), (ii) introduce explicit constraint forces, (iii) minimize constraint forces implicitly by the technique of Lagrange multipliers or projection methods. Constraint algorithms are often applied to molecular dynamics simulations. Although such simulations are sometimes performed using internal coordinates that automatically satisfy the bond-length, bond-angle and torsion-angle constraints, simulations may also be performed using explicit or implicit constraint forces for these three constraints. However, explicit constraint forces give rise to inefficiency; more computational power is required to get a trajectory of a given length. Therefore, internal co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equation
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in French an ''équation'' is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. ''Solving'' an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables. An equation is written as two expressions, connected by a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Branch And Bound
Branch and bound (BB, B&B, or BnB) is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical optimization. A branch-and-bound algorithm consists of a systematic enumeration of candidate solutions by means of state space search: the set of candidate solutions is thought of as forming a rooted tree with the full set at the root. The algorithm explores ''branches'' of this tree, which represent subsets of the solution set. Before enumerating the candidate solutions of a branch, the branch is checked against upper and lower estimated ''bounds'' on the optimal solution, and is discarded if it cannot produce a better solution than the best one found so far by the algorithm. The algorithm depends on efficient estimation of the lower and upper bounds of regions/branches of the search space. If no bounds are available, the algorithm degenerates to an exhaustive search. The method was first proposed by Ailsa Land and Alison Doig whilst ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interval Arithmetic
Interval arithmetic (also known as interval mathematics, interval analysis, or interval computation) is a mathematical technique used to put bounds on rounding errors and measurement errors in mathematical computation. Numerical methods using interval arithmetic can guarantee reliable and mathematically correct results. Instead of representing a value as a single number, interval arithmetic represents each value as a range of possibilities. For example, instead of saying the height of someone is approximately 2 meters, one could using interval arithmetic, say that the height of the person is definitely between 1.97 meters and 2.03 meters. Mathematically, using interval arithmetic, instead of working with an uncertain real-valued variable x, one works with an interval ,b/math> that defines the range of values that x can have. In other words, any value of the variable x lies in the closed interval between a and b. A function f, when applied to x, yields an inexact value; f ins ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monotonic Function
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus and analysis In calculus, a function f defined on a subset of the real numbers with real values is called ''monotonic'' if and only if it is either entirely non-increasing, or entirely non-decreasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is called ''monotonically increasing'' (also ''increasing'' or ''non-decreasing'') if for all x and y such that x \leq y one has f\!\left(x\right) \leq f\!\left(y\right), so f preserves the order (see Figure 1). Likewise, a function is called ''monotonically decreasing'' (also ''decreasing'' or ''non-increasing'') if, whenever x \leq y, then f\!\left(x\right) \geq f\!\left(y\ri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |