HOME
*





Interpolation Search
Interpolation search is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (''key values''). It was first described by W. W. Peterson in 1957. Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key, usually via a linear interpolation. The key value actually found at this estimated position is then compared to the key value being sought. If it is not equal, then depending on the comparison, the remaining search space is reduced to the part before or after the estimated position. This method will only work if calculations on the size of differences between key values are sensible. By comparison, binary search always chooses the middl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Online Algorithm
In computer science, an online algorithm is one that can process its input piece-by-piece in a serial fashion, i.e., in the order that the input is fed to the algorithm, without having the entire input available from the start. In contrast, an offline algorithm is given the whole problem data from the beginning and is required to output an answer which solves the problem at hand. In operations research, the area in which online algorithms are developed is called online optimization. As an example, consider the sorting algorithms selection sort and insertion sort: selection sort repeatedly selects the minimum element from the unsorted remainder and places it at the front, which requires access to the entire input; it is thus an offline algorithm. On the other hand, insertion sort considers one input element per iteration and produces a partial solution without considering future elements. Thus insertion sort is an online algorithm. Note that the final result of an insertion sort ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flashsort
Flashsort is a distribution sorting algorithm showing linear computational complexity for uniformly distributed data sets and relatively little additional memory requirement. The original work was published in 1998 by Karl-Dietrich Neubert. Concept Flashsort is an efficient in-place implementation of histogram sort, itself a type of bucket sort. It assigns each of the input elements to one of ''buckets'', efficiently rearranges the input to place the buckets in the correct order, then sorts each bucket. The original algorithm sorts an input array as follows: # Using a first pass over the input or ''a priori'' knowledge, find the minimum and maximum sort keys. # Linearly divide the range into buckets. # Make one pass over the input, counting the number of elements which fall into each bucket. (Neubert calls the buckets "classes" and the assignment of elements to their buckets "classification".) # Convert the counts of elements in each bucket to a prefix sum, where is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Newton's Method
In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function defined for a real variable , the function's derivative , and an initial guess for a root of . If the function satisfies sufficient assumptions and the initial guess is close, then :x_ = x_0 - \frac is a better approximation of the root than . Geometrically, is the intersection of the -axis and the tangent of the graph of at : that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as :x_ = x_n - \frac until a sufficiently precise value is reached. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex functions an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hash Table
In computing, a hash table, also known as hash map, is a data structure that implements an associative array or dictionary. It is an abstract data type that maps keys to values. A hash table uses a hash function to compute an ''index'', also called a ''hash code'', into an array of ''buckets'' or ''slots'', from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. Ideally, the hash function will assign each key to a unique bucket, but most hash table designs employ an imperfect hash function, which might cause hash ''collisions'' where the hash function generates the same index for more than one key. Such collisions are typically accommodated in some way. In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pairs, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ternary Search
A ternary search algorithm is a technique in computer science for finding the minimum or maximum of a unimodal function. A ternary search determines either that the minimum or maximum cannot be in the first third of the domain or that it cannot be in the last third of the domain, then repeats on the remaining two thirds. A ternary search is an example of a divide and conquer algorithm (see search algorithm). The function Assume we are looking for a maximum of f(x) and that we know the maximum lies somewhere between A and B. For the algorithm to be applicable, there must be some value x such that * for all a, b with A \leq a * if f(m_1) = f(m_2), then the search should be conducted in _1; m_2/math>, but this case can be attributed to any of the previous two (in order to simplify the code). Sooner or later the length of the segment will be a little less than a predetermined constant, and the process can be stopped. choice points m_1 and m_2: * m_1 = l + (r - l) / 3 * m_2 = r - ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Search
In computer science, an exponential search (also called doubling search or galloping search or Struzik search) is an algorithm, created by Jon Bentley and Andrew Chi-Chih Yao in 1976, for searching sorted, unbounded/infinite lists. There are numerous ways to implement this with the most common being to determine a range that the search key resides in and performing a binary search within that range. This takes ''O''(log ''i'') where ''i'' is the position of the search key in the list, if the search key is in the list, or the position where the search key should be, if the search key is not in the list. Exponential search can also be used to search in bounded lists. Exponential search can even out-perform more traditional searches for bounded lists, such as binary search, when the element being searched for is near the beginning of the array. This is because exponential search will run in ''O''(log ''i'') time, where ''i'' is the index of the element being searched for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Search
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in logarithmic time in the worst case, making O(\log n) comparisons, where n is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed for fast searching, such as hash tables, that can be searched mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Search
In computer science, a linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. A linear search runs in at worst linear time and makes at most comparisons, where is the length of the list. If each element is equally likely to be searched, then linear search has an average case of comparisons, but the average case can be affected if the search probabilities for each element vary. Linear search is rarely practical because other search algorithms and schemes, such as the binary search algorithm and hash tables, allow significantly faster searching for all but short lists. Algorithm A linear search sequentially checks each element of the list until it finds an element that matches the target value. If the algorithm reaches the end of the list, the search terminates unsuccessfully. Basic algorithm Given a list of elements with values or record ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Search Algorithm
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in logarithmic time in the worst case, making O(\log n) comparisons, where n is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed for fast searching, such as hash tables, that can be searched mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Three-way Comparison
In computer science, a three-way comparison takes two values A and B belonging to a type with a total order and determines whether A < B, A = B, or A > B in a single operation, in accordance with the mathematical law of trichotomy. Machine-level computation Many processors have instruction sets that support such an operation on primitive types. Some machines have signed integers based on a sign-and-magnitude or one's complement representation (see signed number representations), both of which allow a differentiated positive and negative zero. This does not violate trichotomy as long as a consistent total order is adopted: either −0 = +0 or −0 < +0 is valid. Common floating point types, however, have an exception to trichotomy: there is a special value "NaN" (Not a Number) such that ''x'' < NaN, ''x'' > NaN, and ''x'' = NaN are all false for all floating-point values ''x'' (including NaN itself). High-level languages Capabilities In C, the functions strcmp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

B-tree
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as databases and file systems. Origin B-trees were invented by Rudolf Bayer and Edward M. McCreight while working at Boeing Research Labs, for the purpose of efficiently managing index pages for large random-access files. The basic assumption was that indices would be so voluminous that only small chunks of the tree could fit in main memory. Bayer and McCreight's paper, ''Organization and maintenance of large ordered indices'', was first circulated in July 1970 and later published in ''Acta Informatica''. Bayer and McCreight never explained what, if a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]