HOME
*





Hyperbolic 3-manifold
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3–manifolds of finite volume have a particular importance in 3–dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory. Importance in topology Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Dehn Surgery
In mathematics, hyperbolic Dehn surgery is an operation by which one can obtain further hyperbolic 3-manifolds from a given cusped hyperbolic 3-manifold. Hyperbolic Dehn surgery exists only in dimension three and is one which distinguishes hyperbolic geometry in three dimensions from other dimensions. Such an operation is often also called hyperbolic Dehn filling, as Dehn surgery proper refers to a "drill and fill" operation on a link which consists of ''drilling'' out a neighborhood of the link and then ''filling'' back in with solid tori. Hyperbolic Dehn surgery actually only involves "filling". We will generally assume that a hyperbolic 3-manifold is complete. Suppose ''M'' is a cusped hyperbolic 3-manifold with ''n'' cusps. ''M'' can be thought of, topologically, as the interior of a compact manifold with toral boundary. Suppose we have chosen a meridian and longitude for each boundary torus, i.e. simple closed curves that are generators for the fundamental group of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seifert–Weber Space
In mathematics, Seifert–Weber space (introduced by Herbert Seifert and Constantin Weber) is a closed hyperbolic 3-manifold. It is also known as Seifert–Weber dodecahedral space and hyperbolic dodecahedral space. It is one of the first discovered examples of closed hyperbolic 3-manifolds. It is constructed by gluing each face of a dodecahedron to its opposite in a way that produces a closed 3-manifold. There are three ways to do this gluing consistently. Opposite faces are misaligned by 1/10 of a turn, so to match them they must be rotated by 1/10, 3/10 or 5/10 turn; a rotation of 3/10 gives the Seifert–Weber space. Rotation of 1/10 gives the Poincaré homology sphere, and rotation by 5/10 gives 3-dimensional real projective space. With the 3/10-turn gluing pattern, the edges of the original dodecahedron are glued to each other in groups of five. Thus, in the Seifert–Weber space, each edge is surrounded by five pentagonal faces, and the dihedral angle between these pent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Angle
A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimensions, a dihedral angle represents the angle between two hyperplanes. The planes of a flying machine are said to be at positive dihedral angle when both starboard and port main planes (commonly called wings) are upwardly inclined to the lateral axis. When downwardly inclined they are said to be at a negative dihedral angle. Mathematical background When the two intersecting planes are described in terms of Cartesian coordinates by the two equations : a_1 x + b_1 y + c_1 z + d_1 = 0 :a_2 x + b_2 y + c_2 z + d_2 = 0 the dihedral angle, \varphi between them is given by: :\cos \varphi = \frac and satisfies 0\le \varphi \le \pi/2. Alternatively, if and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solid Angle
In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the ''apex'' of the solid angle, and the object is said to ''subtend'' its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a '' steradian'' (symbol: sr). One steradian corresponds to one unit of area on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, 4\pi. Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds. A small object nearby may subtend the same solid angle as a larger object farther away. For example, although the Moon is much smaller ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Space (topology)
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. Intuitively speaking, the points of each equivalence class are or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space. Definition Let \left(X, \tau_X\right) be a topological space, and let \,\sim\, be an equivalence relation on X. The quotient set, Y = X / \sim\, is the set of equivalence clas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -dimensional polytope or -polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a -polytope consist of -polytopes that may have -polytopes in common. Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes. Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem. The German term ''polytop'' was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematician ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ending Lamination Theorem
In hyperbolic geometry, the ending lamination theorem, originally conjectured by , states that hyperbolic 3-manifolds with finitely generated fundamental groups are determined by their topology together with certain "end invariants", which are geodesic laminations on some surfaces in the boundary of the manifold. The ending lamination theorem is a generalization of the Mostow rigidity theorem to hyperbolic manifolds of infinite volume. When the manifold is compact or of finite volume, the Mostow rigidity theorem states that the fundamental group determines the manifold. When the volume is infinite the fundamental group is not enough to determine the manifold: one also needs to know the hyperbolic structure on the surfaces at the "ends" of the manifold, and also the ending laminations on these surfaces. and proved the ending lamination conjecture for Kleinian surface groups. In view of the Tameness theorem In mathematics, the tameness theorem states that every complete hype ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tameness Theorem
In mathematics, the tameness theorem states that every complete hyperbolic 3-manifold with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by . It was proved by and, independently, by Danny Calegari and David Gabai. It is one of the fundamental properties of geometrically infinite hyperbolic 3-manifolds, together with the density theorem for Kleinian groups and the ending lamination theorem. It also implies the Ahlfors measure conjecture. History Topological tameness may be viewed as a property of the ends of the manifold, namely, having a local product structure. An analogous statement is well known in two dimensions, that is, for surfaces. However, as the example of Alexander horned sphere shows, there are wild embeddings among 3-manifolds, so this property is not automatic. The conjecture was raised in the form of a question by Albert Marden, who prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrically Finite
In geometry, a group of isometries of hyperbolic space is called geometrically finite if it has a well-behaved fundamental domain. A hyperbolic manifold is called geometrically finite if it can be described in terms of geometrically finite groups. Geometrically finite polyhedra A convex polyhedron ''C'' in hyperbolic space is called geometrically finite if its closure in the conformal compactification of hyperbolic space has the following property: *For each point ''x'' in , there is a neighborhood ''U'' of ''x'' such that all faces of meeting ''U'' also pass through ''x'' . For example, every polyhedron with a finite number of faces is geometrically finite. In hyperbolic space of dimension at most 2, every geometrically finite polyhedron has a finite number of sides, but there are geometrically finite polyhedra in dimensions 3 and above with infinitely many sides. For example, in Euclidean space R''n'' of dimension ''n''≥2 there is a polyhedron ''P'' with an in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cusp Neighbourhood
In mathematics, a cusp neighborhood is defined as a set of points near a cusp singularity. Cusp neighborhood for a Riemann surface The cusp neighborhood for a hyperbolic Riemann surface can be defined in terms of its Fuchsian model. Suppose that the Fuchsian group ''G'' contains a parabolic element g. For example, the element ''t'' ∈ SL(2,Z) where :t(z)=\begin 1 & 1 \\ 0 & 1 \end:z = \frac = z+1 is a parabolic element. Note that all parabolic elements of SL(2,C) are conjugate to this element. That is, if ''g'' ∈ SL(2,Z) is parabolic, then g=h^th for some ''h'' ∈ SL(2,Z). The set :U=\ where H is the upper half-plane has :\gamma(U) \cap U = \emptyset for any \gamma \in G - \langle g \rangle where \langle g \rangle is understood to mean the group generated by ''g''. That is, γ acts properly discontinuously on ''U''. Because of this, it can be seen that the projection of ''U'' onto H/''G'' is thus :E = U/ \langle g \rangle. Here, ''E'' is called the neighb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]