Hybrid Ternary Code
   HOME
*





Hybrid Ternary Code
In telecommunications, the hybrid (H-) ternary line code is a line code that operates on a hybrid principle combining the binary non-return-to-zero-level (NRZL) and the polar return-to-zero (RZ) codes. The H-ternary code has three levels for signal representation; these are positive (+), zero (0), and negative (−). These three levels are represented by three states. The state of the line code could be in any one of these three states. A transition takes place to the next state as a result of a binary input 1 or 0 and the encoder's present output state. The encoding procedure is as follows. # In general, the encoder outputs + level for a binary 1 input and a − level for a binary 0 input. # However, if this would result in the same output level as the previous bit time, a 0 level is output instead. # Initially, the encoder output present state is assumed at 0 level when the first bit arrives at the encoder input. The new line-coding scheme violates the encoding rule of NRZ-L w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Code
In telecommunication, a line code is a pattern of voltage, current, or photons used to represent digital data transmitted down a communication channel or written to a storage medium. This repertoire of signals is usually called a constrained code in data storage systems. Some signals are more prone to error than others as the physics of the communication channel or storage medium constrains the repertoire of signals that can be used reliably. Common line encodings are unipolar, polar, bipolar, and Manchester code. Transmission and storage After line coding, the signal is put through a physical communication channel, either a transmission medium or data storage medium.Karl Paulsen"Coding for Magnetic Storage Mediums".2007. The most common physical channels are: * the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling). * the line-coded signal (the ''baseband signal'') underg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NRZL
In telecommunication, a non-return-to-zero (NRZ) line code is a binary code in which ones are represented by one significant condition, usually a positive voltage, while zeros are represented by some other significant condition, usually a negative voltage, with no other neutral or rest condition. For a given data signaling rate, i.e., bit rate, the NRZ code requires only half the baseband bandwidth required by the Manchester code (the passband bandwidth is the same). The pulses in NRZ have more energy than a return-to-zero (RZ) code, which also has an additional rest state beside the conditions for ones and zeros. When used to represent data in an asynchronous communication scheme, the absence of a neutral state requires other mechanisms for bit synchronization when a separate clock signal is not available. Since NRZ is not inherently a self-clocking signal, some additional synchronization technique must be used for avoiding bit slips; examples of such techniques are a ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Return-to-zero
Return-to-zero (RZ or RTZ) describes a line code used in telecommunications signals in which the signal drops (returns) to zero between each pulse. This takes place even if a number of consecutive 0s or 1s occur in the signal. The signal is self-clocking. This means that a separate clock does not need to be sent alongside the signal, but suffers from using twice the bandwidth to achieve the same data-rate as compared to non-return-to-zero format. The "zero" between each bit is a neutral or rest condition, such as a zero amplitude in pulse-amplitude modulation (PAM), zero phase shift in phase-shift keying (PSK), or mid-frequency in frequency-shift keying (FSK). That "zero" condition is typically halfway between the significant condition representing a 1 bit and the other significant condition representing a 0 bit. Although return-to-zero (RZ) contains a provision for synchronization, it still has a DC component resulting in “baseline wander” during long strings of 0 or 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE Xplore
IEEE Xplore digital library is a research database for discovery and access to journal articles, conference proceedings, technical standards, and related materials on computer science, electrical engineering and electronics, and allied fields. It contains material published mainly by the Institute of Electrical and Electronics Engineers (IEEE) and other partner publishers. IEEE Xplore provides web access to more than 5 million documents from publications in computer science, electrical engineering, electronics and allied fields. Its documents and other materials comprise more than 300 peer-reviewed journals, more than 1,900 global conferences, more than 11,000 technical standards, almost 5,000 ebooks, and over 500 online courses. Approximately 20,000 new documents are added each month. Anyone can search IEEE Xplore and find bibliographic records and abstracts for its contents, while access to full-text documents may require an individual or institutional subscription. See also * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternate Mark Inversion
In telecommunication, bipolar encoding is a type of return-to-zero (RZ) line code, where two nonzero values are used, so that the three values are +, −, and zero. Such a signal is called a duobinary signal. Standard bipolar encodings are designed to be DC-balanced, spending equal amounts of time in the + and − states. The reason why bipolar encoding is classified as a return to zero (RZ) is that when a bipolar encoded channel is idle the line is held at a constant "zero" level, and when it is transmitting bits the line is either in a +V or -V state corresponding to the binary bit being transmitted. Thus, the line always returns to the "zero" level to denote optionally a separation of bits or to denote idleness of the line. Alternate mark inversion One kind of bipolar encoding is a paired disparity code, of which the simplest example is alternate mark inversion. In this code, a binary 0 is encoded as zero volts, as in unipolar encoding, whereas a binary 1 is encoded alter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




HDB3
Modified AMI codes are a digital telecommunications technique to maintain system synchronization. Alternate mark inversion (AMI) line codes are modified by deliberate insertion of bipolar violations. There are several types of modified AMI codes, used in various T-carrier and E-carrier systems. Overview The clock rate of an incoming T-carrier is extracted from its bipolar line code. Each signal transition provides an opportunity for the receiver to see the transmitter's clock. The AMI code guarantees that transitions are always present before and after each mark (1 bit), but are missing between adjacent spaces (0 bits). To prevent loss of synchronization when a long string of zeros is present in the payload, deliberate bipolar violations are inserted into the line code, to create a sufficient number of transitions to maintain synchronization; this is a form of run length limited coding. The receive terminal equipment recognizes the bipolar violations and removes from the user data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bandwidth (signal Processing)
Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to ''passband bandwidth'' or ''baseband bandwidth''. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency. Bandwidth in hertz is a central concept in many fields, including electronics, information theory, digital communications, radio communications, signal processing, and spectroscopy and is one of the determinants of the capacity of a given communication channel. A key characteristic of bandwidth is that any band of a given width can carry the same amount of information, regardless of where that band is located in the frequency spectrum. For example, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bipolar Encoding
In telecommunication, bipolar encoding is a type of return-to-zero (RZ) line code, where two nonzero values are used, so that the three values are +, −, and zero. Such a signal is called a duobinary signal. Standard bipolar encodings are designed to be DC-balanced, spending equal amounts of time in the + and − states. The reason why bipolar encoding is classified as a return to zero (RZ) is that when a bipolar encoded channel is idle the line is held at a constant "zero" level, and when it is transmitting bits the line is either in a +V or -V state corresponding to the binary bit being transmitted. Thus, the line always returns to the "zero" level to denote optionally a separation of bits or to denote idleness of the line. Alternate mark inversion One kind of bipolar encoding is a paired disparity code, of which the simplest example is alternate mark inversion. In this code, a binary 0 is encoded as zero volts, as in unipolar encoding, whereas a binary 1 is encoded alter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MLT-3 Encoding
MLT-3 encoding (Multi-Level Transmit) is a line code (a signaling method used in a telecommunication system for transmission purposes) that uses three voltage levels. An MLT-3 interface emits less electromagnetic interference and requires less bandwidth than most other binary or ternary interfaces that operate at the same bit rate (see PCM for discussion on bandwidth / quantization tradeoffs), such as Manchester code or Alternate Mark Inversion. MLT-3 cycles sequentially through the voltage levels −1, 0, +1, 0. It moves to the next state to transmit a 1 bit, and stays in the same state to transmit a 0 bit. Similar to simple NRZ encoding, MLT-3 has a coding efficiency of 1 bit/baud, however it requires four transitions (baud) to complete a full cycle (from low-to-middle, middle-to-high, high-to-middle, middle-to-low). Thus, the maximum fundamental frequency is reduced to one fourth of the baud rate. This makes signal transmission more amenable to copper wires. The lack of tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Manchester Encoding
In telecommunication and data storage, Manchester code (also known as phase encoding, or PE) is a line code in which the encoding of each data bit is either low then high, or high then low, for equal time. It is a self-clocking signal with no DC component. Consequently, electrical connections using a Manchester code are easily galvanically isolated. Manchester code derives its name from its development at the University of Manchester, where the coding was used for storing data on the magnetic drums of the Manchester Mark 1 computer. Manchester code was widely used for magnetic recording on 1600 bpi computer tapes before the introduction of 6250 bpi tapes which used the more efficient group-coded recording. Manchester code was used in early Ethernet physical layer standards and is still used in consumer IR protocols, RFID and near-field communication. Features Manchester coding is a special case of binary phase-shift keying (BPSK), where the data controls the phas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


4B3T
4B3T, which stands for 4 (four) binary 3 (three) ternary, is a line encoding scheme used for ISDN PRI interface. 4B3T represents four binary bits using three pulses. Description It uses three states: * + (positive pulse), * 0 (no pulse), and * − (negative pulse). This means we have 24 = 16 input combinations to represent, using 33 = 27 output combinations. 000 is not used to avoid long periods without a transition. 4B3T uses a paired disparity code to achieve an overall zero DC bias: six triplets are used which have no DC component (0+−, 0−+, +0−, −0+, +−0, −+0), and the remaining 20 are grouped into 10 pairs with differing disparity (e.g. ++− and −−+). When transmitting, the DC bias is tracked and a combination chosen that has a DC component of the opposite sign to the running total. This mapping from 4 bits to three ternary states is given in a table known as Modified Monitoring State 43 (MMS43). A competing encoding technique, used for the ISDN basic rate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]