HOME
*





HDB3
Modified AMI codes are a digital telecommunications technique to maintain system synchronization. Alternate mark inversion (AMI) line codes are modified by deliberate insertion of bipolar violations. There are several types of modified AMI codes, used in various T-carrier and E-carrier systems. Overview The clock rate of an incoming T-carrier is extracted from its bipolar line code. Each signal transition provides an opportunity for the receiver to see the transmitter's clock. The AMI code guarantees that transitions are always present before and after each mark (1 bit), but are missing between adjacent spaces (0 bits). To prevent loss of synchronization when a long string of zeros is present in the payload, deliberate bipolar violations are inserted into the line code, to create a sufficient number of transitions to maintain synchronization; this is a form of run length limited coding. The receive terminal equipment recognizes the bipolar violations and removes from the user data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternate Mark Inversion
In telecommunication, bipolar encoding is a type of return-to-zero (RZ) line code, where two nonzero values are used, so that the three values are +, −, and zero. Such a signal is called a duobinary signal. Standard bipolar encodings are designed to be DC-balanced, spending equal amounts of time in the + and − states. The reason why bipolar encoding is classified as a return to zero (RZ) is that when a bipolar encoded channel is idle the line is held at a constant "zero" level, and when it is transmitting bits the line is either in a +V or -V state corresponding to the binary bit being transmitted. Thus, the line always returns to the "zero" level to denote optionally a separation of bits or to denote idleness of the line. Alternate mark inversion One kind of bipolar encoding is a paired disparity code, of which the simplest example is alternate mark inversion. In this code, a binary 0 is encoded as zero volts, as in unipolar encoding, whereas a binary 1 is encoded alter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Code
In telecommunication, a line code is a pattern of voltage, current, or photons used to represent digital data transmitted down a communication channel or written to a storage medium. This repertoire of signals is usually called a constrained code in data storage systems. Some signals are more prone to error than others as the physics of the communication channel or storage medium constrains the repertoire of signals that can be used reliably. Common line encodings are unipolar, polar, bipolar, and Manchester code. Transmission and storage After line coding, the signal is put through a physical communication channel, either a transmission medium or data storage medium.Karl Paulsen"Coding for Magnetic Storage Mediums".2007. The most common physical channels are: * the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling). * the line-coded signal (the ''baseband signal'') underg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hybrid Ternary Code
In telecommunications, the hybrid (H-) ternary line code is a line code that operates on a hybrid principle combining the binary non-return-to-zero-level (NRZL) and the polar return-to-zero (RZ) codes. The H-ternary code has three levels for signal representation; these are positive (+), zero (0), and negative (−). These three levels are represented by three states. The state of the line code could be in any one of these three states. A transition takes place to the next state as a result of a binary input 1 or 0 and the encoder's present output state. The encoding procedure is as follows. # In general, the encoder outputs + level for a binary 1 input and a − level for a binary 0 input. # However, if this would result in the same output level as the previous bit time, a 0 level is output instead. # Initially, the encoder output present state is assumed at 0 level when the first bit arrives at the encoder input. The new line-coding scheme violates the encoding rule of NRZ-L w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


E-carrier
The E-carrier is a member of the series of carrier systems developed for digital transmission of many simultaneous telephone calls by time-division multiplexing. The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardized the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). It was widely used in almost all countries outside the US, Canada, and Japan. E-carrier deployments have steadily been replaced by Ethernet as telecommunication networks transition towards all IP. E1 frame structure An E1 link operates over two separate sets of wires, usually unshielded twisted pair (balanced cable) or using coaxial (unbalanced cable). A nominal 3 volt peak signal is encoded with pulses using a method avoiding long periods without polarity changes. The line data rate is 2.048 Mbit/s ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bipolar Encoding
In telecommunication, bipolar encoding is a type of return-to-zero (RZ) line code, where two nonzero values are used, so that the three values are +, −, and zero. Such a signal is called a duobinary signal. Standard bipolar encodings are designed to be DC-balanced, spending equal amounts of time in the + and − states. The reason why bipolar encoding is classified as a return to zero (RZ) is that when a bipolar encoded channel is idle the line is held at a constant "zero" level, and when it is transmitting bits the line is either in a +V or -V state corresponding to the binary bit being transmitted. Thus, the line always returns to the "zero" level to denote optionally a separation of bits or to denote idleness of the line. Alternate mark inversion One kind of bipolar encoding is a paired disparity code, of which the simplest example is alternate mark inversion. In this code, a binary 0 is encoded as zero volts, as in unipolar encoding, whereas a binary 1 is encoded alter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Digital Signal 1
Digital Signal 1 (DS1, sometimes DS-1) is a T-carrier signaling scheme devised by Bell Labs. DS1 is the primary digital telephone standard used in the United States, Canada and Japan and is able to transmit up to 24 multiplexed voice and data calls over telephone lines. E-carrier is used in place of T-carrier outside the United States, Canada, Japan, and South Korea. DS1 is the logical bit pattern used over a physical T1 line; in practice, the terms ''DS1'' and ''T1'' are often used interchangeably. Overview T1 refers to the primary digital telephone carrier system used in North America. T1 is one line type of the PCM T-carrier hierarchy. T1 describes the cabling, signal type, and signal regeneration requirements of the carrier system. The signal transmitted on a T1 line, referred to as the DS1 signal, consists of serial bits transmitted at the rate of 1.544 Mbit/s. The type of line code used is called Alternate Mark Inversion (AMI). Digital Signal Designation is the classifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System
A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, structure and purpose and expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences. Systems have several common properties and characteristics, including structure, function(s), behavior and interconnectivity. Etymology The term ''system'' comes from the Latin word ''systēma'', in turn from Greek language, Greek ''systēma'': "whole concept made of several parts or members, system", literary "composition"."σύστημα"
Henry George Liddell, Robert Scott, ''A Greek–English Lexicon'', on Per ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Slip (telecommunication)
In telecommunications, a slip is a positional displacement in a sequence of transmitted symbols that causes the loss or insertion of one or more symbols. Slips are usually caused by inadequate synchronization of the two clocks controlling the transmission (telecommunications), transmission or by poor reception of the signal. References

* Federal Standard 1037C Synchronization Telecommunication theory {{Telecomm-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bit Stuffing
In data transmission and telecommunication, bit stuffing (also known—uncommonly—as positive justification) is the insertion of non-information bits into data. Stuffed bits should not be confused with overhead bits. Bit stuffing is used for various purposes, such as for bringing bit streams that do not necessarily have the same or rationally related bit rates up to a common rate, or to fill buffers or frames. The location of the stuffing bits is communicated to the receiving end of the data link, where these extra bits are removed to return the bit streams to their original bit rates or form. Bit stuffing may be used to synchronize several channels before multiplexing or to rate-match two single channels to each other. Another use of bit stuffing is for run length limited coding: to limit the number of consecutive bits of the same value in the data to be transmitted. A bit of the opposite value is inserted after the maximum allowed number of consecutive bits. Since this is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robbed-bit Signaling
In communications systems, robbed-bit signaling (RBS) is a scheme to provide maintenance and line signaling services on many T1 digital carrier circuits using channel-associated signaling (CAS). The T1 carrier circuit is a type of dedicated circuit currently employed in North America and Japan. Context The T1 circuit is divided into 24 channels, each carrying 8,000 samples per second, each 8 bits long. The Super Frame (SF) consist of 12 frames of 24 channels. The DS1 designation consist of 24 frames called, Extended Super Frame (ESF). In either designation, these channels are multiplexed together and sample at 8000bit/s. In the superframe, ten frames are utilized entirely for voice/data and two are utilized partially for voice. Hence, each of the two partial frames yields bit/s = 56kbit/s for voice data per channel, compared to the bit/s = 64kbit/s per channel in the other frames. Intuitively, 5 out of 6 frames have 8-bit resolution equal to 64kbit/s (8 bits × 8,000 samples pe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Digital Signal 0
Digital Signal 0 (DS0) is a basic digital signaling rate of 64 kilobits per second (kbit/s), corresponding to the capacity of one analog voice-frequency-equivalent communication channel. The DS0 rate, and its equivalents E0 in the E-carrier system and T0 in the T-carrier system, form the basis for the digital multiplex transmission hierarchy in telecommunications systems used in North America, Europe, Japan, and the rest of the world, for both the early plesiochronous systems such as T-carrier and for modern synchronous systems such as SDH/SONET. The DS0 rate was introduced to carry a single digitized voice call. For a typical phone call, the audio sound is digitized at an 8 kHz sample rate, or 8000 samples per second, using 8-bit pulse-code modulation for each of the samples. This results in a data rate of 64 kbit/s. Because of its fundamental role in carrying a single phone call, the DS0 rate forms the basis for the digital multiplex transmission hierarchy in telecommunications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DS-3
A Digital Signal 3 (DS3) is a digital signal level 3 T-carrier. It may also be referred to as a T3 line. *The data rate for this type of signal is 44.736 Mbit/s (45 Mb). *DS3 uses 75ohm coaxial cable and BNC connectors. *This level of carrier can transport 28 DS1 level signals within its payload. *This level of carrier can transport 672 DS0 level channels within its payload. *Such circuits are the usual kind between telephony carriers, both wired and wireless, and typically by OC1 optical connections. Cabling DS3 interconnect cables must be made with true 75-ohm coaxial cable and connectors. Cables or connectors which are 50 ohms or which significantly deviate from 75 ohms will result in signal reflections which will lower the performance of the connection, possibly to the point of not working. GR-139-CORE ''Generic Requirements for Central Office Coaxial Cable'', defines type 734 and 735 cables for this application. Due to losses, there are differing distance limitations for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]