Higher-order Logic
   HOME
*





Higher-order Logic
mathematics and logic, a higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic. The term "higher-order logic", abbreviated as HOL, is commonly used to mean higher-order simple predicate logic. Here "simple" indicates that the underlying type theory is the ''theory of simple types'', also called the ''simple theory of types'' (see Type theory). Leon Chwistek and Frank P. Ramsey proposed this as a simplification of the complicated and clumsy ''ramified theory of types'' specified in the ''Principia Mathematica'' by Alfred North Whitehead and Bertrand Russell. ''Simple types'' is nowadays sometimes also meant to exclude polymorphic and dependent types. Quantification scope First-order logic quantifies only variables th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer science. He is best known for the lambda calculus, the Church–Turing thesis, proving the unsolvability of the Entscheidungsproblem, the Frege–Church ontology, and the Church–Rosser theorem. He also worked on philosophy of language (see e.g. Church 1970). Alongside his student Alan Turing, Church is considered one of the founders of computer science. Life Alonzo Church was born on June 14, 1903, in Washington, D.C., where his father, Samuel Robbins Church, was a Justice of the Peace and the judge of the Municipal Court for the District of Columbia. He was the grandson of Alonzo Webster Church (1829-1909), United States Senate Librarian from 1881-1901, and great grandson of Alonzo Church, a Professor of Mathematics and Astronomy and 6th Pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Many-sorted First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of axi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aleph Nought
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (\,\aleph\,). The cardinality of the natural numbers is \,\aleph_0\, (read ''aleph-nought'' or ''aleph-zero''; the term ''aleph-null'' is also sometimes used), the next larger cardinality of a well-orderable set is aleph-one \,\aleph_1\;, then \,\aleph_2\, and so on. Continuing in this manner, it is possible to define a cardinal number \,\aleph_\alpha\, for every ordinal number \,\alpha\;, as described below. The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities. The aleph numbers differ from the infinity (\,\infty\,) commonly found in algebra and calculus, in that the alephs m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Menachem Magidor
Menachem Magidor (Hebrew: מנחם מגידור; born January 24, 1946) is an Israeli mathematician who specializes in mathematical logic, in particular set theory. He served as president of the Hebrew University of Jerusalem, was president of the Association for Symbolic Logic from 1996 to 1998, and is currently the president of the Division for Logic, Methodology and Philosophy of Science and Technology of the International Union for History and Philosophy of Science (DLMPST/IUHPS; 2016-2019). In 2016 he was elected an honorary foreign member of the American Academy of Arts and Sciences. In 2018 he received the Solomon Bublick Award. Biography Menachem Magidor was born in Petah Tikva, Israel. He received his Ph.D. in 1973 from the Hebrew University of Jerusalem. His thesis, ''On Super Compact Cardinals'', was written under the supervision of Azriel Lévy. He served as president of the Hebrew University of Jerusalem from 1997 to 2009, following Hanoch Gutfreund and succeed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivision of all of its subsets into large and small sets such that itself is large, and all singletons are small, complements of small sets are large and vice versa. The intersection of fewer than large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of ''κ''. (Here the term ''κ-additive'' means that, for any sequence ''A''''α'', α<λ of cardinality '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Löwenheim Number
In mathematical logic the Löwenheim number of an abstract logic is the smallest cardinal number for which a weak downward Löwenheim–Skolem theorem holds.Zhang 2002 page 77 They are named after Leopold Löwenheim, who proved that these exist for a very broad class of logics. Abstract logic An abstract logic, for the purpose of Löwenheim numbers, consists of: * A collection of "sentences"; * A collection of "models", each of which is assigned a cardinality; * A relation between sentences and models that says that a certain sentence is "satisfied" by a particular model. The theorem does not require any particular properties of the sentences or models, or of the satisfaction relation, and they may not be the same as in ordinary first-order logic. It thus applies to a very broad collection of logics, including first-order logic, higher-order logics, and infinitary logics. Definition The Löwenheim number of a logic ''L'' is the smallest cardinal ''κ'' such that if an arbitr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Calculus
In mathematical logic, a proof calculus or a proof system is built to prove statements. Overview A proof system includes the components: * Language: The set ''L'' of formulas admitted by the system, for example, propositional logic or first-order logic. * Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. * Axioms: Formulas in ''L'' assumed to be valid. All theorems are derived from axioms. Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for radically different logics. For example, a paradigmatic case is the sequent calculus, which can be used to express the consequence relations of both intuitionistic logic and relevance logic. Thus, loosely speaking, a proof calculus is a template or design pattern, characterized by a certain style of formal inference, that may be specialized to produce specific formal systems, namely by specifying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gödel's Completeness Theorem
Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first-order theory: If ''T'' is such a theory, and φ is a sentence (in the same language) and every model of ''T'' is a model of φ, then there is a (first-order) proof of φ using the statements of ''T'' as axioms. One sometimes says this as "anything universally true is provable". This does not contradict Gödel's incompleteness theorem, which shows that some formula φu is unprovable although true in the natural numbers, which are a particular model of a first-order theory describing them — φu is just false in some other model of the first-order theory being considered (such as a non-standard model of arithmetic for Peano arithmetic). It makes a close link between model theory that deals with what is true in different models, and proof theory tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable Function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable''. This term has since come to be identified with the com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]