Heptagonal Number
   HOME
*



picture info

Heptagonal Number
A heptagonal number is a figurate number that is constructed by combining heptagons with ascending size. The ''n''-th heptagonal number is given by the formula :H_n=\frac. The first few heptagonal numbers are: : 0, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, … Parity The parity of heptagonal numbers follows the pattern odd-odd-even-even. Like square numbers, the digital root in base 10 of a heptagonal number can only be 1, 4, 7 or 9. Five times a heptagonal number, plus 1 equals a triangular number. Additional properties * The heptagonal numbers have several notable formulas: :H_=H_m+H_n+5mn :H_=H_m+H_n-5mn+3n :H_m-H_n=\frac :40H_n+9=(10n-3)^2 Sum of reciprocals A formula for the sum of the reciprocals of the heptagonal numbers is given by: : \begin\sum_^\infty \frac &= \frac+\frac\ln(5)+\frac\ln\left(\frac\sqrt\right)+\frac\ln\left(\frac\sqrt\right)\\ &=\frac13\left(\frac+\frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Figurate Number
The term figurate number is used by different writers for members of different sets of numbers, generalizing from triangular numbers to different shapes (polygonal numbers) and different dimensions (polyhedral numbers). The term can mean * polygonal number * a number represented as a discrete -dimensional regular geometry, geometric pattern of -dimensional Ball (mathematics), balls such as a polygonal number (for ) or a polyhedral number (for ). * a member of the subset of the sets above containing only triangular numbers, pyramidal numbers, and their analogs in other dimensions. Terminology Some kinds of figurate number were discussed in the 16th and 17th centuries under the name "figural number". In historical works about Greek mathematics the preferred term used to be ''figured number''. In a use going back to Jacob Bernoulli's Ars Conjectandi, the term ''figurate number'' is used for triangular numbers made up of successive integers, tetrahedral numbers made up of successi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Digital Root
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, in base 10, the digital root of the number 12345 is 6 because the sum of the digits in the number is 1 + 2 + 3 + 4 + 5 = 15, then the addition process is repeated again for the resulting number 15, so that the sum of 1 + 5 equals 6, which is the digital root of that number. In base 10, this is equivalent to taking the remainder upon division by 9 (except when the digital root is 9, where the remainder upon division by 9 will be 0), which allows it to be used as a divisibility rule. Formal definition Let n be a natural number. For base b > 1, we define the digit sum F_ : \mathbb \rightarrow \mathbb to be the following: :F_(n) = \sum_^ d_i where k = \lfloor \log_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Root
In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'', which is denoted by \sqrt, where the symbol \sqrt is called the ''radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case 9. For nonnegative , the principal square root can also be written in exponent notation, as . Every positive number has two square roots: \sqrt, which is positive, and -\sqrt, which is negative. The two roots can be written more concisely using the ± sign as \plusmn\sqrt. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or \phi) denotes the golden ratio. The constant \varphi satisfies the quadratic equation \varphi^2 = \varphi + 1 and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli, and also goes by several other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of \varphi—may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sums Of Reciprocals
In mathematics and especially number theory, the sum of reciprocals generally is computed for the reciprocals of some or all of the positive integers (counting numbers)—that is, it is generally the sum of unit fractions. If infinitely many numbers have their reciprocals summed, generally the terms are given in a certain sequence and the first ''n'' of them are summed, then one more is included to give the sum of the first ''n''+1 of them, etc. If only finitely many numbers are included, the key issue is usually to find a simple expression for the value of the sum, or to require the sum to be less than a certain value, or to determine whether the sum is ever an integer. For an infinite series of reciprocals, the issues are twofold: First, does the sequence of sums diverge—that is, does it eventually exceed any given number—or does it converge, meaning there is some number that it gets arbitrarily close to without ever exceeding it? (A set of positive integers is said to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibonacci Quarterly
The ''Fibonacci Quarterly'' is a scientific journal on mathematical topics related to the Fibonacci numbers, published four times per year. It is the primary publication of The Fibonacci Association, which has published it since 1963. Its founding editors were Verner Emil Hoggatt Jr. and Alfred Brousseau;Biography of Verner Emil Hoggatt Jr.
by Clark Kimberling the present editor is Professor Curtis Cooper of the Mathematics Department of the . The ''Fibonacci Quarterly'' has an editorial board of nineteen members an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pell Number
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins , , , , and , so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82. Both the Pell numbers and the companion Pell numbers may be calculated by means of a recurrence relation similar to that for the Fibonacci numbers, and both sequences of numbers grow exponentially, proportionally to powers of the silver ratio 1 + . As well as being used to approximate the square root of two, Pell numbers can be used to find square triangular numbers, to construct integer approximations to the right isosceles triangle, and to solve certain combinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


99 (number)
99 (ninety-nine) is the natural number following 98 and preceding 100. In mathematics 99 is: *a Kaprekar number *a lucky number *a palindromic number *the ninth repdigit *the sum of the cubes of three consecutive integers: 99 = 23 + 33 + 43 *the sum of the sums of the divisors of the first 11 positive integers. *the highest two digit number in decimal. In other fields *The atomic number of einsteinium, an actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform .... * ".99" is frequently used as a price ender in pricing. References External links {{DEFAULTSORT:99 Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




70 (number)
70 (seventy) is the natural number following 69 and preceding 71. In mathematics 70 is: * a sphenic number because it factors as 3 distinct primes. * a Pell number. * the seventh pentagonal number. * the fourth tridecagonal number. * the fifth pentatope number. * the number of ways to choose 4 objects out of 8 if order does not matter. This makes it a central binomial coefficient. * the smallest weird number, a natural number that is abundant but not semiperfect. * a palindromic number in bases 9 (779), 13 (5513) and 34 (2234). * a Harshad number in bases 6, 8, 9, 10, 11, 13, 14, 15 and 16. * an Erdős–Woods number, since it is possible to find sequences of 70 consecutive integers such that each inner member shares a factor with either the first or the last member. The sum of the first 24 squares starting from 1 is 70 = 4900, i.e. a square pyramidal number. This is the only non trivial solution to the cannonball problem and relates 70 to the Leech lattice and thus string the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

46 (number)
46 (forty-six) is the natural number following 45 and preceding 47. In mathematics Forty-six is * a Wedderburn-Etherington number, * an enneagonal number * a centered triangular number. * the number of parallelogram polyominoes with 6 cells. It is the sum of the totient function for the first twelve integers. 46 is the largest even integer that cannot be expressed as a sum of two abundant numbers. It is also the sixteenth semiprime. Since it is possible to find sequences of 46+1 consecutive integers such that each inner member shares a factor with either the first or the last member, 46 is an Erdős–Woods number. In science * The atomic number of palladium. * The number of human chromosomes. * The approximate molar mass of ethanol (46.07 g mol) Astronomy * Messier object M46, a magnitude 6.5 open cluster in the constellation Puppis. * The New General Cataloguebr>objectNGC 46, a star in the constellation Pisces. In music * Japanese idol group franchise Sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


27 (number)
27 (twenty-seven; Roman numeral XXVII) is the natural number following 26 and preceding 28. In mathematics * Twenty-seven is a cube of 3: 3^3=3\times 3\times 3. 27 is also 23 (see tetration). There are exactly 27 straight lines on a smooth cubic surface, which give a basis of the fundamental representation of the E6 Lie algebra. 27 is also a decagonal number. * In decimal, it is the first composite number not divisible by any of its digits. * It is the radix (base) of the septemvigesimal positional numeral system. * 27 is the only positive integer that is 3 times the sum of its digits. * In a prime reciprocal magic square of the multiples of , the magic constant is 27. * In the Collatz conjecture (aka the "3n+1 conjecture"), a starting value of 27 requires 111 steps to reach 1, more than any number smaller than it. * The unique simple formally real Jordan algebra, the exceptional Jordan algebra of self-adjoint 3 by 3 matrices of quaternions, is 27-dimensional. * In dec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]