HOME
*





Fibonacci Quarterly
The ''Fibonacci Quarterly'' is a scientific journal on mathematical topics related to the Fibonacci numbers, published four times per year. It is the primary publication of The Fibonacci Association, which has published it since 1963. Its founding editors were Verner Emil Hoggatt Jr. and Alfred Brousseau;Biography of Verner Emil Hoggatt Jr.
by Clark Kimberling the present editor is Professor Curtis Cooper of the Mathematics Department of the . The ''Fibonacci Quarterly'' has an editorial board of nineteen members an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curtis Cooper (mathematician)
Curtis Niles Cooper is an American mathematician. He currently is a professor at the University of Central Missouri, in the Department of Mathematics and Computer Science. GIMPS Using software from the GIMPS project, Cooper and Steven Boone found the 43rd known Mersenne prime on their 700 Personal computer, PC Computer cluster, cluster on December 15, 2005. The prime, 230,402,457 − 1, is 9,152,052 digits long and is the ninth Mersenne prime for GIMPS. Cooper and Boone became the first GIMPS contributors to find two primes when they also found the 44th known Mersenne prime, 232,582,657 − 1 (or M32,582,657), which has 9,808,358 digits . This prime was discovered on September 4, 2006 using a PC cluster of over 850 machines. This is the tenth Mersenne prime for GIMPS. On January 25, 2013, Cooper found his third Mersenne prime of 257,885,161 − 1. On September 17, 2015, Cooper's computer reported yet another Mersenne prime, 274,207,281 - 1, which was the largest known prime nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoprimes
A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy. Some sources use the term pseudoprime to describe all probable primes, both composite numbers and actual primes. Pseudoprimes are of primary importance in public-key cryptography, which makes use of the difficulty of factoring large numbers into their prime factors. Carl Pomerance estimated in 1988 that it would cost $10 million to factor a number with 144 digits, and $100 billion to factor a 200-digit number (the cost today is dramatically lower but still prohibitively high). But finding two large prime numbers as needed for this use is also expensive, so various probabilistic primality tests are used, some of which in rare cases inappropriately deliver composite numbers instead of primes. On the other hand, deterministic primality tests, such as the AKS primality test, do not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractal Dimension
In mathematics, more specifically in fractal geometry, a fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern (strictly speaking, a fractal pattern) changes with the scale at which it is measured. It has also been characterized as a measure of the space-filling capacity of a pattern that tells how a fractal scales differently from the space it is embedded in; a fractal dimension does not have to be an integer. The essential idea of "fractured" dimensions has a long history in mathematics, but the term itself was brought to the fore by Benoit Mandelbrot based on his 1967 paper on self-similarity in which he discussed ''fractional dimensions''. In that paper, Mandelbrot cited previous work by Lewis Fry Richardson describing the counter-intuitive notion that a coastline's measured length changes with the length of the measuring stick used ( see Fig. 1). In terms of that notion, the fractal dimension of a coastline quantifies ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curves
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic curve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collatz Sequence
The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns integer sequence, sequences of integers in which each term is obtained from the previous term as follows: if the previous term is Parity (mathematics), even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. It is named after mathematician Lothar Collatz, who introduced the idea in 1937, two years after receiving his doctorate. It is also known as the problem, the conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quadratic Residues
In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that: :x^2\equiv q \pmod. Otherwise, ''q'' is called a quadratic nonresidue modulo ''n''. Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and states that if the context makes it clear, the adjective "quadratic" may be dropped. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey Theory
Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of mathematics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?" More specifically, Ron Graham described Ramsey theory as a "branch of combinatorics". Examples A typical result in Ramsey theory starts with some mathematical structure that is then cut into pieces. How big must the original structure be in order to ensure that at least one of the pieces has a given interesting property? This idea can be defined as partition regularity. For example, consider a complete graph of order ''n''; that is, there are ''n'' vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now colour each edge either red or blue. How large must ''n'' be in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagorean Triple
A Pythagorean triple consists of three positive integers , , and , such that . Such a triple is commonly written , and a well-known example is . If is a Pythagorean triple, then so is for any positive integer . A primitive Pythagorean triple is one in which , and are coprime (that is, they have no common divisor larger than 1). For example, is a primitive Pythagorean triple whereas is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle. The name is derived from the Pythagorean theorem, stating that every right triangle has side lengths satisfying the formula a^2+b^2=c^2; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the triangle with sides a=b=1 and c=\sqrt2 is a right triangle, but (1,1,\sqrt2) is not a Pythagorean triple because \sqrt2 is not an integer. Moreover, 1 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stirling Number
In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book ''Methodus differentialis'' (1730). They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782. Two different sets of numbers bear this name: the Stirling numbers of the first kind and the Stirling numbers of the second kind. Additionally, Lah numbers are sometimes referred to as Stirling numbers of the third kind. Each kind is detailed in its respective article, this one serving as a description of relations between them. A common property of all three kinds is that they describe coefficients relating three different sequences of polynomials that frequently arise in combinatorics. Moreover, all three can be defined as the number of partitions of ''n'' elements into ''k'' non-empty subsets, with different ways of counting orderings within each subset. Notation Sev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continued Fraction
In mathematics, a continued fraction is an expression (mathematics), expression obtained through an iterative process of representing a number as the sum of its integer part and the multiplicative inverse, reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression (mathematics), infinite expression. In either case, all integers in the sequence, other than the first, must be positive number, positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or function (mathematics), functions are used in place of one or more of the numerat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]