Heap Sort
   HOME





Heap Sort
In computer science, heapsort is an efficient, comparison-based sorting algorithm that reorganizes an input array into a heap (a data structure where each node is greater than its children) and then repeatedly removes the largest node from that heap, placing it at the end of the array in a similar manner to Selection sort. Although somewhat slower in practice on most machines than a well-implemented quicksort, it has the advantages of very simple implementation and a more favorable worst-case runtime. Most real-world quicksort variants include an implementation of heapsort as a fallback should they detect that quicksort is becoming degenerate. Heapsort is an in-place algorithm, but it is not a stable sort. Heapsort was invented by J. W. J. Williams in 1964. The paper also introduced the binary heap as a useful data structure in its own right. In the same year, Robert W. Floyd published an improved version that could sort an array in-place, continuing his earlier research in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sorting Algorithm
In computer science, a sorting algorithm is an algorithm that puts elements of a List (computing), list into an Total order, order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the Algorithmic efficiency, efficiency of other algorithms (such as search algorithm, search and merge algorithm, merge algorithms) that require input data to be in sorted lists. Sorting is also often useful for Canonicalization, canonicalizing data and for producing human-readable output. Formally, the output of any sorting algorithm must satisfy two conditions: # The output is in monotonic order (each element is no smaller/larger than the previous element, according to the required order). # The output is a permutation (a reordering, yet retaining all of the original elements) of the input. Although some algorithms are designed for sequential access, the highest-performing algorithms assum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Binary Tree
In computer science, a binary tree is a Tree (data structure), tree data structure in which each node has at most two child node, children, referred to as the ''left child'' and the ''right child''. That is, it is a m-ary tree, ''k''-ary tree with . A recursive definition using set theory is that a binary tree is a Triple (mathematics), triple , where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a Singleton (mathematics), singleton (a single–element set) containing the root. From a graph theory perspective, binary trees as defined here are Arborescence (graph theory), arborescences. A binary tree may thus be also called a bifurcating arborescence, a term which appears in some early programming books before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected graph, undirected, rather than directed graph, in which case a binary tree is an ordered tree, ordered, rooted tree. Some authors use rooted bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max Planck Institute For Informatics
The Max Planck Institute for Informatics (German: ''Max-Planck-Institut für Informatik'', abbreviated ''MPI-INF'' or ''MPII'') is a research institute in computer science with a focus on algorithms and their applications in a broad sense. It hosts fundamental research (algorithms and complexity, computational logic, programming logics) as well a research for various application domains (computer graphics, geometric computation, constraint solving, computational biology). Founded November 1988 by the Max Planck Society, Germany's largest publicly funded body for foundation research, MPII is located on the campus of Saarland University. Research departments The institute promotes six departments and three independent research groups on its website. The six departments are Algorithms and Complexity; Computer Vision and Machine Learning; Internet Architecture; Computer Graphics; Databases and Information Systems; and Visual Computing and Artificial Intelligence. The three resear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Call
In computer programming, a function (also procedure, method, subroutine, routine, or subprogram) is a callable unit of software logic that has a well-defined interface and behavior and can be invoked multiple times. Callable units provide a powerful programming tool. The primary purpose is to allow for the decomposition of a large and/or complicated problem into chunks that have relatively low cognitive load and to assign the chunks meaningful names (unless they are anonymous). Judicious application can reduce the cost of developing and maintaining software, while increasing its quality and reliability. Callable units are present at multiple levels of abstraction in the programming environment. For example, a programmer may write a function in source code that is compiled to machine code that implements similar semantics. There is a callable unit in the source code and an associated one in the machine code, but they are different kinds of callable units with different implic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Heap Bottomup Vs Topdown
Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two values (0 and 1) for each digit * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that takes two arguments * Binary relation, a relation involving two elements * Finger binary, a system for counting in binary numbers on the fingers of human hands Computing * Binary code, the representation of text and data using only the digits 1 and 0 * Bit, or binary digit, the basic unit of information in computers * Binary file, composed of something other than human-readable text ** Executable, a type of binary file that contains machine code for the computer to execute * Binary tree, a computer tree data structure in which each node has at most two children * Binary-coded decimal, a method for encoding for decimal digits in binary sequences Astronomy * Binary star, a star system with two stars in it * Binary planet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Priority Queue
In computer science, a priority queue is an abstract data type similar to a regular queue (abstract data type), queue or stack (abstract data type), stack abstract data type. In a priority queue, each element has an associated ''priority'', which determines its order of service. Priority queue serves highest priority items first. Priority values have to be instances of an ordered data type, and higher priority can be given either to the lesser or to the greater values with respect to the given order relation. For example, in Java (programming language), Java standard library, ''PriorityQueues the least elements with respect to the order have the highest priority. This implementation detail is without much practical significance, since passing to the converse relation, opposite order relation turns the least values into the greatest, and vice versa. While priority queues are often implemented using Heap (data structure) , heaps, they are conceptually distinct. A priority queue can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inline Expansion
In computing, inline expansion, or inlining, is a manual or compiler optimization that replaces a function call site with the body of the called function. Inline expansion is similar to macro expansion, but occurs during compiling, without changing the source code (the text), while macro expansion occurs before compiling, and results in different text that is then processed by the compiler. Inlining is an important optimization, but has complex effects on performance. As a rule of thumb, some inlining will improve speed at very minor cost of space, but excess inlining will hurt speed, due to inlined code consuming too much of the instruction cache, and also cost significant space. A survey of the modest academic literature on inlining from the 1980s and 1990s is given in Peyton Jones & Marlow 1999. Overview Inline expansion is similar to macro expansion as the compiler places a new copy of the function in each place it is called. Inlined functions run a little faster than the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamenta Informaticae
''Fundamenta Informaticae'' is a peer-reviewed scientific journal covering computer science. The editor-in-chief is Bartek Klin. It was established in 1977 by the Polish Mathematical Society as Series IV of the '' Annales Societatis Mathematicae Polonae'', with its main focus on theoretical foundations of computer science. The journal is currently hosted on the Episciences.org platform of the Center for direct scientific communication, and published by IOS Press under the auspices of the European Association for Theoretical Computer Science The European Association for Theoretical Computer Science (EATCS) is an international organization with a European focus, founded in 1972. Its aim is to facilitate the exchange of ideas and results among theoretical computer scientists as well as .... Further reading * Janusz Kowalski, 2004The Polish Mathematical Society (PTM) ''European Mathematical Society Newsletter'' 54:24-29. External links * Computer science journals Theoretica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Find First Set
In computer software and hardware, find first set (ffs) or find first one is a bit operation that, given an unsigned Word (computer architecture), machine word, designates the index or position of the least significant bit set to one in the word counting from the least significant bit position. A nearly equivalent operation is count trailing zeros (ctz) or number of trailing zeros (ntz), which counts the number of zero bits following the least significant one bit. The complementary operation that finds the index or position of the most significant set bit is log base 2, so called because it computes the binary logarithm . This is #Properties and relations, closely related to count leading zeros (clz) or number of leading zeros (nlz), which counts the number of zero bits preceding the most significant one bit. There are two common variants of find first set, the POSIX definition which starts indexing of bits at 1, herein labelled ffs, and the variant which starts indexing of bits at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamming Weight
The Hamming weight of a string (computer science), string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a given set of bits, this is the number of bits set to 1, or the digit sum of the Binary numeral system, binary representation of a given number and the Taxicab geometry, ''ℓ''₁ norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation. History and usage The Hamming weight is named after the American mathematician Richard Hamming, although he did not originate the notion. The Hamming weight of binary numbers was already used in 1899 by James Whitbread Lee Glaisher, James W. L. Glaisher to give a formula for Gould's sequence, the number of odd binomial coefficients in a single row of Pascal's triangle. Irving S. Reed introduced a concept, equivalen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Series
In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac14 + \tfrac18 + \cdots is a geometric series with common ratio , which converges to the sum of . Each term in a geometric series is the geometric mean of the term before it and the term after it, in the same way that each term of an arithmetic series is the arithmetic mean of its neighbors. While Ancient Greek philosophy, Greek philosopher Zeno's paradoxes about time and motion (5th century BCE) have been interpreted as involving geometric series, such series were formally studied and applied a century or two later by Greek mathematics, Greek mathematicians, for example used by Archimedes to Quadrature of the Parabola, calculate the area inside a parabola (3rd century BCE). Today, geometric series are used in mathematical finance, calculati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Invariant
In computer science, a loop invariant is a property of a program loop that is true before (and after) each iteration. It is a logical assertion, sometimes checked with a code assertion. Knowing its invariant(s) is essential in understanding the effect of a loop. In formal program verification, particularly the Floyd-Hoare approach, loop invariants are expressed by formal predicate logic and used to prove properties of loops and by extension algorithms that employ loops (usually correctness properties). The loop invariants will be true on entry into a loop and following each iteration, so that on exit from the loop both the loop invariants and the loop termination condition can be guaranteed. From a programming methodology viewpoint, the loop invariant can be viewed as a more abstract specification of the loop, which characterizes the deeper purpose of the loop beyond the details of this implementation. A survey article covers fundamental algorithms from many areas of compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]