HOME
*



picture info

Harmonic Divisor Number
In mathematics, a harmonic divisor number, or Ore number (named after Øystein Ore who defined it in 1948), is a positive integer whose divisors have a harmonic mean that is an integer. The first few harmonic divisor numbers are: : 1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190 . Examples For example, the harmonic divisor number 6 has the four divisors 1, 2, 3, and 6. Their harmonic mean is an integer: : \frac=2. The number 140 has divisors 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, and 140. Their harmonic mean is: : \frac=5 5 is an integer, making 140 a harmonic divisor number. Factorization of the harmonic mean The harmonic mean of the divisors of any number can be expressed as the formula :H(n) = \frac where is the sum of th powers of the divisors of : is the number of divisors, and is the sum of divisors . All of the terms in this formula are multiplicative, but not completely multiplicative. Therefore, the harmonic mean is also multiplicative. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perfect Number Cuisenaire Rods 6
Perfect commonly refers to: * Perfection, completeness, excellence * Perfect (grammar), a grammatical category in some languages Perfect may also refer to: Film * Perfect (1985 film), ''Perfect'' (1985 film), a romantic drama * Perfect (2018 film), ''Perfect'' (2018 film), a science fiction thriller Literature * Perfect (Friend novel), ''Perfect'' (Friend novel), a 2004 novel by Natasha Friend * Perfect (Hopkins novel), ''Perfect'' (Hopkins novel), a young adult novel by Ellen Hopkins * Perfect (Joyce novel), ''Perfect'' (Joyce novel), a 2013 novel by Rachel Joyce * Perfect (Shepard novel), ''Perfect'' (Shepard novel), a Pretty Little Liars novel by Sara Shepard * ''Perfect'', a young adult science fiction novel by Dyan Sheldon Music * Perfect interval, in music theory * Perfect Records, a record label Artists * Perfect (musician) (born 1980), reggae singer * Perfect (Polish band) * Perfect (American band), an American alternative rock group Albums * Perfect (Intwine album ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Of Computation
''Mathematics of Computation'' is a bimonthly mathematics journal focused on computational mathematics. It was established in 1943 as ''Mathematical Tables and other Aids to Computation'', obtaining its current name in 1960. Articles older than five years are available electronically free of charge. Abstracting and indexing The journal is abstracted and indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 2.417. References External links * Delayed open access journals English-language journals Mathematics journals Publications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. The sum of divisors of a number, excluding the number itself, is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors including itself; in symbols, \sigma_1(n)=2n where \sigma_1 is the sum-of-divisors function. For instance, 28 is perfect as 1 + 2 + 4 + 7 + 14 = 28. This definition is ancient, appearing as early as Euclid's ''Elements'' (VII.22) where it is called (''perfect'', ''ideal'', or ''complete number''). Euclid also proved a formation rule (IX.36) whereby q(q+1)/2 is an even perfect number whenever q is a prime of the form 2^p-1 for positive integer p—what is now called a Mersenne prime. Two millennia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Number
In mathematics, a square number or perfect square is an integer that is the square (algebra), square of an integer; in other words, it is the multiplication, product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usual notation for the square of a number is not the product , but the equivalent exponentiation , usually pronounced as " squared". The name ''square'' number comes from the name of the shape. The unit of area is defined as the area of a unit square (). Hence, a square with side length has area . If a square number is represented by ''n'' points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of ''n''; thus, square numbers are a type of figurate numbers (other examples being Cube (algebra), cube numbers and triangular numbers). Square numbers are non-negative. A non-negative integer is a square number when its square root is again an intege ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. The sum of divisors of a number, excluding the number itself, is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors including itself; in symbols, \sigma_1(n)=2n where \sigma_1 is the sum-of-divisors function. For instance, 28 is perfect as 1 + 2 + 4 + 7 + 14 = 28. This definition is ancient, appearing as early as Euclid's ''Elements'' (VII.22) where it is called (''perfect'', ''ideal'', or ''complete number''). Euclid also proved a formation rule (IX.36) whereby q(q+1)/2 is an even perfect number whenever q is a prime of the form 2^p-1 for positive integer p—what is now called a Mersenne prime. Two millennia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]