Grazing-incidence Small-angle Scattering
   HOME
*





Grazing-incidence Small-angle Scattering
Grazing-incidence small-angle scattering (GISAS) is a scattering technique used to study nanostructured surfaces and thin films. The scattered probe is either photons (grazing-incidence small-angle X-ray scattering, GISAXS) or neutrons (grazing-incidence small-angle neutron scattering, GISANS). GISAS combines the accessible length scales of small-angle scattering (SAS: SAXS or SANS) and the surface sensitivity of grazing incidence diffraction (GID). Applications A typical application of GISAS is the characterisation of self-assembly and self-organization on the nanoscale in thin films. Systems studied by GISAS include quantum dot arrays, growth instabilities formed during in-situ growth, self-organized nanostructures in thin films of block copolymers, silica mesophases, and nanoparticles. GISAXS was introduced by Levine and Cohen to study the dewetting of gold deposited on a glass surface. The technique was further developed by Naudon and coworkers to study metal agglomerates on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small-angle Scattering
Small-angle scattering (SAS) is a scattering technique based on deflection of collimated radiation away from the straight trajectory after it interacts with structures that are much larger than the wavelength of the radiation. The deflection is small (0.1-10°) hence the name ''small-angle''. SAS techniques can give information about the size, shape and orientation of structures in a sample. SAS is a powerful technique for investigating large-scale structures from 10 Å up to thousands and even several tens of thousands of angstroms. The most important feature of the SAS method is its potential for analyzing the inner structure of disordered systems, and frequently the application of this method is a unique way to obtain direct structural information on systems with random arrangement of density inhomogeneities in such large-scales. Currently, the SAS technique, with its well-developed experimental and theoretical procedures and wide range of studied objects, is a self-contained b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viruses
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898,Dimmock p. 4 more than 9,000 virus species have been described in detail of the millions of types of viruses in the environment. Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. The study of viruses is known as virology, a subspeciality of microbiology. When infected, a host cell is often forced to rapidly produce thousands of copies of the original virus. When not inside an infected cell or in the process of infecting a cell, viruses exist in the form of independent particles, or ''virions'', consisting of (i) the genetic material, i.e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-rays
An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, frequencies in the range 30 Hertz, petahertz to 30 Hertz, exahertz ( to ) and energies in the range 145 electronvolt, eV to 124 keV. X-ray wavelengths are shorter than those of ultraviolet, UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Röntgen, Wilhelm Conrad Röntgen, who discovered it on November 8, 1895. He named it ''X-radiation'' to signify an unknown type of radiation.Novelline, Robert (1997). ''Squire's Fundamentals of Radiology''. Harvard University Press. 5th edition. . Spellings of ''X-ray(s)'' in English include the variants ''x-ray(s)'', ''xray(s)'', and ''X ray(s)''. The most familiar use of X-ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LBNL
Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in the hills of Berkeley, California, the lab overlooks the campus of the University of California, Berkeley, and is managed by the University of California system. History 1931–1941 The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939. Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutron Reflectometer
Neutron reflectometry is a neutron diffraction technique for measuring the structure of thin films, similar to the often complementary techniques of X-ray reflectivity and ellipsometry. The technique provides valuable information over a wide variety of scientific and technological applications including chemical aggregation, polymer and surfactant adsorption, structure of thin film magnetic systems, biological membranes, etc. History Neutron reflectometery emerged as a new field in the 1980s, after the discovery of giant magnetoresistance in antiferromagnetically-coupled multilayered films. Technique The technique involves shining a highly collimated beam of neutrons onto an extremely flat surface and measuring the intensity of reflected radiation as a function of angle or neutron wavelength. The exact shape of the reflectivity profile provides detailed information about the structure of the surface, including the thickness, density, and roughness of any thin films layered on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutron Research Facility
A neutron research facility is most commonly a big laboratory operating a large-scale neutron source that provides thermal neutrons to a suite of research instruments. The neutron source usually is a research reactor or a spallation source. In some cases, a smaller facility will provide high energy neutrons (e.g. 2.5 MeV or 14 MeV fusion neutrons) using existing neutron generator technologies. List of neutron facilities The following list is intended to be exhaustive and to cover active facilities as well as those that are shut down. ;Australia * ANSTO-HIFAR Reactor, Sydney * Open-pool Australian lightwater reactor (OPAL) ;Bangladesh * Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission(BAEC) ;Canada * NRC Canadian Neutron Beam Centre at Chalk River Laboratories * RE-Labs Inc. – Single Event Effects Testing Services ;China * China Spallation Neutron Source – Dongguan, Guangdong. * CNPG – Light ion (D,T), China Institute of Atomic Energ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

National Synchrotron Light Source
The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron. The NSLS experimental floor consisted of two electron storage rings: an X-ray ring and a VUV (vacuum ultraviolet) ring which provided intense, focused light spanning the electromagnetic spectrum from the infrared through X-rays. The properties of this light and the specially designed experimental stations, called beamlines, allowed scientists in many fields of research to perform experiments not otherwise possible at their own laboratories. History Ground was broken for the NSLS on September 28, 1978. The VUV ring began operations in late 1982 and the X-ray ring was commissioned in 1984. In 1986, a second phase of construction expanded the NSLS by , which added ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

DESY
The Deutsches Elektronen-Synchrotron (English ''German Electron Synchrotron''), commonly referred to by the abbreviation DESY, is a national research center in Germany. It operates particle accelerators used to investigate the structure of matter, and conducts a broad spectrum of inter-disciplinary scientific research in three main areas: particle and high energy physics; photon science, and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany, the States of Germany, and the German Research Foundation (DFG). DESY is a member of the Helmholtz Association and operates at sites in Hamburg and Zeuthen. Functions DESY's function is to conduct fundamental research. It specializes in particle accelerator development, construction and operation, particle physics research to explore the fundamental characteristics of matter and forces, including ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




European Synchrotron Radiation Facility
The European Synchrotron Radiation Facility (ESRF) is a joint research facility situated in Grenoble, France, supported by 22 countries (13 member countries: France, Germany, Italy, the UK, Spain, Switzerland, Belgium, the Netherlands, Denmark, Finland, Norway, Sweden, Russia; and 9 associate countries: Austria, Portugal, Israel, Poland, the Czech Republic, Hungary, Slovakia, India and South Africa). Some 8,000 scientists visit this particle accelerator each year, conducting upwards of 2,000 experiments and producing around 1,800 scientific publications. History Inaugurated in September 1994, it has an annual budget of around 100 million euros, employs over 630 people and is host to more than visiting scientists each year. In 2009, the ESRF began a first major improvement in its capacities. With the creation of the new ultra-stable experimental hall of 8,000 m2 in 2015, its X-rays are 100 times more powerful, with a power of 100 billion times that of hospital radiography d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cornell Laboratory For Accelerator-based Sciences And Education
The Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) is a particle accelerator facility located in Wilson Laboratory on the Cornell University campus in Ithaca, NY. CLASSE formed from the merger of the Cornell High-Energy Synchrotron Source (CHESS) and the Laboratory for Elementary-Particle Physics (LEPP) in July 2006. Ritchie Patterson is the Director of CLASSE. The Wilson Synchrotron Lab, which houses both the Cornell Electron Storage Ring (CESR) and CHESS, is named after Robert R. Wilson, known for his work as a group leader in the Manhattan Project, for being the first director of the Fermi National Accelerator Laboratory, and for contributing to the design of CESR. LEPP The Laboratory for Elementary-Particle Physics (LEPP) is a high-energy physics laboratory studying fundamental particles and their interactions. In operation below the athletic fields on campus is the 768 meter Cornell Electron Storage Ring (CESR). CESR is an electron-positron collider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Photon Source
The Advanced Photon Source (APS) at Argonne National Laboratory (in Lemont, Illinois) is a storage-ring-based high-energy X-ray light source facility. It is one of five X-ray light sources owned and funded by the U.S. Department of Energy Office of Science. The APS saw first light on March 26, 1995. It is operated as a user facility, meaning that it is open to the world’s scientific community, and more than 5,500 researchers make use of its resources each year. How APS works The APS uses a series of particle accelerators to push electrons up to nearly the speed of light, and then injects them into a storage ring that is roughly two-thirds of a mile around. At every bend in the track, these electrons emit synchrotron radiation in the form of ultrabright X-rays. Scientists at 65 experiment stations around the ring use these X-rays for basic and applied research in a number of fields. Scientists use the X-rays generated by the APS to peer inside batteries, with the goal of creat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stanford Synchrotron Radiation Lightsource
The Stanford Synchrotron Radiation Lightsource (formerly Stanford Synchrotron Radiation Laboratory), a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring (Stanford Positron Electron Asymmetric Ring - SPEAR) at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, biology, basic research, and education. SSRL provides experimental facilities to some 2,000 academic and industrial scientists working in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]