Geometric Programming
   HOME
*





Geometric Programming
A geometric program (GP) is an optimization problem of the form : \begin \mbox & f_0(x) \\ \mbox & f_i(x) \leq 1, \quad i=1, \ldots, m\\ & g_i(x) = 1, \quad i=1, \ldots, p, \end where f_0,\dots,f_m are posynomials and g_1,\dots,g_p are monomials. In the context of geometric programming (unlike standard mathematics), a monomial is a function from \mathbb_^n to \mathbb defined as :x \mapsto c x_1^ x_2^ \cdots x_n^ where c > 0 \ and a_i \in \mathbb . A posynomial is any sum of monomials.S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming'' Retrieved 20 October 2019. Geometric programming is closely related to convex optimization: any GP can be made convex by means of a change of variables. GPs have numerous applications, including component sizing in IC design, aircraft design, maximum likelihood estimation for logistic regression in statistics, and parameter tuning of positive linear systems in control theory. Convex form Geometric programs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optimization (mathematics)
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Posynomials
A posynomial, also known as a posinomial in some literature, is a function of the form : f(x_1, x_2, \dots, x_n) = \sum_^K c_k x_1^ \cdots x_n^ where all the coordinates x_i and coefficients c_k are positive real numbers, and the exponents a_ are real numbers. Posynomials are closed under addition, multiplication, and nonnegative scaling. For example, : f(x_1, x_2, x_3) = 2.7 x_1^2x_2^x_3^ + 2x_1^x_3^ is a posynomial. Posynomials are not the same as polynomials in several independent variables. A polynomial's exponents must be non-negative integers, but its independent variables and coefficients can be arbitrary real numbers; on the other hand, a posynomial's exponents can be arbitrary real numbers, but its independent variables and coefficients must be positive real numbers. This terminology was introduced by Richard J. Duffin, Elmor L. Peterson, and Clarence Zener in their seminal book on geometric programming. Posynomials are a special case of signomial A signomial is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Optimization
Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard. Convex optimization has applications in a wide range of disciplines, such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling, finance, statistics ( optimal experimental design), and structural optimization, where the approximation concept has proven to be efficient. With recent advancements in computing and optimization algorithms, convex programming is nearly as straightforward as linear programming. Definition A convex optimization problem is an optimization problem in which the objective function is a convex function and the feasible set is a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integrated Circuit
An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny MOSFETs (metal–oxide–semiconductor field-effect transistors) integrate into a small chip. This results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete electronic components. The IC's mass production capability, reliability, and building-block approach to integrated circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones and other home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern computer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Likelihood Estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when all observed outcomes are assumed to have Normal distributions with the same variance. From the perspective of Bayesian inference, M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logistic Regression
In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent variables. In regression analysis, logistic regression (or logit regression) is estimation theory, estimating the parameters of a logistic model (the coefficients in the linear combination). Formally, in binary logistic regression there is a single binary variable, binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the independent variables can each be a binary variable (two classes, coded by an indicator variable) or a continuous variable (any real value). The corresponding probability of the value labeled "1" can vary between 0 (certainly the value "0") and 1 (certainly the value "1"), hence the labeling; the function that converts log-odds to probability is the logistic function, h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Dynamical System
Linear dynamical systems are dynamical systems whose evaluation functions are linear. While dynamical systems, in general, do not have closed-form solutions, linear dynamical systems can be solved exactly, and they have a rich set of mathematical properties. Linear systems can also be used to understand the qualitative behavior of general dynamical systems, by calculating the equilibrium points of the system and approximating it as a linear system around each such point. Introduction In a linear dynamical system, the variation of a state vector (an N-dimensional vector denoted \mathbf) equals a constant matrix (denoted \mathbf) multiplied by \mathbf. This variation can take two forms: either as a flow, in which \mathbf varies continuously with time : \frac \mathbf(t) = \mathbf \mathbf(t) or as a mapping, in which \mathbf varies in discrete steps : \mathbf_ = \mathbf \mathbf_ These equations are linear in the following sense: if \mathbf(t) and \mathbf(t) are two va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Theory
Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any ''delay'', ''overshoot'', or ''steady-state error'' and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or set point (SP). The difference between actual and desired value of the process variable, called the ''error'' signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects which are also studied are controllability and observability. Control theory is used in control system eng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LogSumExp
The LogSumExp (LSE) (also called RealSoftMax or multivariable softplus) function is a smooth maximum – a smooth approximation to the maximum function, mainly used by machine learning algorithms. It is defined as the logarithm of the sum of the exponentials of the arguments: \mathrm(x_1, \dots, x_n) = \log\left( \exp(x_1) + \cdots + \exp(x_n) \right). Properties The LogSumExp function domain is \R^n, the real coordinate space, and its codomain is \R, the real line. It is an approximation to the maximum \max_i x_i with the following bounds \max \leq \mathrm(x_1, \dots, x_n) \leq \max + \log(n). The first inequality is strict unless n = 1. The second inequality is strict unless all arguments are equal. (Proof: Let m = \max_i x_i. Then \exp(m) \leq \sum_^n \exp(x_i) \leq n \exp(m). Applying the logarithm to the inequality gives the result.) In addition, we can scale the function to make the bounds tighter. Consider the function \frac 1 t \mathrm(tx_1, \dots, tx_n). Then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]